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1.0 INTRODUCTION

The series of programs, known generally by the name STAGS, has been under
development at the Lockheed Palo Alto Research Laboratory for roughly fifteen
years. The first version of STAGS was operational in about 1967 and was a
finite difference based program for the nonlinear analysis of cylindrical
shells with cutouts. This initial development was sponsored by LMSC
(Lockheed). It was followed in about 1968 by a special linear version
restricted to shells of revolution. Buckling and thermal effects were added
in 1970 followed by ineltastic capability, some finite elements and more
general shell geometry by 1972. These programs were funded by a number of

government agencies, but all went by the name STAGS. A new version, STAGS?

(ca. 1974), included transient response, dynamic buckling and could analyze
branched or segmented shells. The first version to be used by the structural
analysis community, STAGSA, was released in 1973 and included dynamic
eigenvalue analysis. The final version to be based on the finite difference
method was released in 1976 (STAGSC). Since that time, the program has
undergone a major re-writing and the latest version, STAGSC-1, was released in
1979. This version of the program is now entirely based on finite elements
and future development will be along the same lines. The development since
the earlier STAGS version (STAGSZ2 and on) has been under the sponsorship of
NASA, Langley. Table 1.1 summarizes this brief historical survey.

The present report deals only with the finite element version, STAGSC-1. The

evaluation study, described in the body of this report, follows the general ﬁ
methodology described by Nickell [1] and is intended to provide a potential {
user of STAGSC-1 with an in-depth description and critique of the program. On :
the other hand, it is not intended to be a “consumer report" by rating the

program against other similar programs. In fact, this would probably be a

very difficult, if not impossible, task since STAGSC-1 has many unique

features which set it apart from most other finite element programs.

09178-848:2
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To begin with, STAGSC-1 is a special purpose program in the respect that its
primary function is shell analysis (although a structure composed entirely of
beams can also be analyzed). Secondly, it is fundamentally developed for
nonlinedar geometric and inelastic analysis. Thirdly, bifurcation buckling and
dynamic analysis are very strong features in STAGSC-1. Bearing this in mind,
it is to be anticipated that the majority of users will be interested mainly
in the more sophisticated and less common analysis problems and will also be
aware of the capabilities of other candidate programs in these areas. For
this reason, the evaluation study performed for STAGSC-1 has done little
comparison with other programs and has concentrated on the program features,
algorithms, structure and performance.

The specific tasks which were performed can be summarized as follows:

A. Review of program documentation (Llheoretical and users manuals)
B. Program architecture description
C. Program funclional description

D. Advanced evaluation topics;

(1) mesh convergence

(2) eigenvalue extraction
(3) transient integration
(4)

large scale nonlinear collapse

The advanced evaluation provides some direct evidence of Lhe performance of
STAGSC-1 for shell structural models which vary in complexity from the

Simp lest single clement modedb up Lo models with more than 400U degrees of
freedom for the study on nonlinear collapse. The mesh convergence study was
performed with models up to 630 d.o.f., while the eigenvalue and transient
integration studies used up to about 1500 d.o.f. Not all capabilities which
are available were exercised but the objective was to examine, in depth, those
features which it is felt are of most significance for the program in

general. No specific study was made on the performance of the modified
Newton-Raphson nonlinear equation solver. The reason for this is simply that
since the solver is used in most of the problems analyzed, sufficient evidence

of its performance would be generated automatically.
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The criteria for evaluating a structural analysis computer program will depend
to some extent on the nature of the program itself and hence on the community
of potential users. In the case of STAGSC-1, as has already been pointed out,
the user community will be relatively sophisticated and will expect more than
a "black box" capability. Thus, program and theory documentation must be
accorded substantial weighting. Of course, the most important considerations
are still the ability of the program to perform the types of analysis for
which it was written, accurately and as economically as possible. For a
program which performs mainly nonlinear analysis, relative economy is
particularly important, since such analyses tend to be expensive in any case.
Ease of input is always desirable but for a program which is less routinely
used it is not an overriding factor. More important for nonlinear analysis is
the ability to post-process the results with as much freedom as possible.

This report is organized into seven major sections plus an Appendix. Section
2 discusses the documentation of STAGSC-1; Sections 3 and 4 describe the
program architecture and functions; Section 5 describes program verification
and Section 6 presents the advanced evaluation studies. Conclusions and
recommendations are presented in Section 7. The Appendix contains reference
diagrams for the program structure and also details of the element stiffness
matrix modal energy spectrum method used in the evaluation of element
convergence.

This evaluation was performed as part of the ISEG program [1] under ONR
Contract No. NOOO14-79-C0825 with Westinghouse Advanced Reactors Division.

0917B-84B:2
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Version
and Date

STAGS
(ca. 1967)

STAGS
(ca. 1968/9)

STAGS
(ca. 1970)

STAGS
(ca. 1970/2)

STAGS?2
(ca. 1972/4)

STAGSA
1973

STAGSC
1976

STAGSC1
1979

0917B-848B:2
(53034} 19

TABLE 1.1
STAGS DEVELOPMENT

General and Added
Capabilities

Nonlinear Finite Difference Code

for Cylindrical Shells with Cut-
Outs.

Linear Version for Shells of
Revolution.

Bifurcation Buckling; Thermal
Effects.

Inelastic Analysis; Finite
Elements; Extension to More
General Shell Properties (Grid
Spacing).

Transient Response; Dynamic
Buckling; Branched and Segmented
Shells.

Dynamic Eigenvalue Analysis.

Improved Convergence with
Gridsize for Nonlinear
Analysis.

Completely Revised Input;

F.E. Library Updated to Include
Springs, Beams, Shells
(Triangle, Quadrilateral and
Transition).

Plotting Available for Geometry,
Deformations, Stresses, Strains,
etc.

Sponsor

LMSC

NSRDC

SAMSO

AFFDL

NASA
Langley

NASA
Langley

NASA
Langley

NASA
Langley

Comments

Initial Version.

First Introduction
of Finite Elements.

Versions for CDC
6600 and UNIVAC 1108

Used by Structural
Analysis Community.

Increased Inaccuracy
Due to Rigid Body
Motions.

Program now Entirely
Finite Element
Based.
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2.0 PROGRAM DOCUMENTATION

The documentation pertaining directly to STAGSC-1 is at present confined to a
users manual [2] describing the input and strategy required to execute a given
problem. A theoretical manual also exists [3] which is not specific to the
STAGSC-1 version. A third manual, of example cases for STAGSC, is available
in draft form and is described as preliminary and incomplete. No programmer's
manual has so far been written.

Therefore, the situation with respect to documentation appears, at least

superficially, to be not entirely satisfactory. However, this is in part made

up for by the overall high quality of the documentation which is available. A

user, quite unfamiliar with STAGSC-1, can progress to the point of successful %
execution of a problem on the basis of the user instructions (Vol. II) alone :
[2]. Moreover, he can do this with some fair understanding of the basis of

the program provided that he is reasonably knowledgeable on the subject of

nonlinear finite element analysis. This is because there are sections in this

volume which deal with the important questions of modeling and solution

strategy. The theoretical manual was written when STAGS (STAGSC) was based on

finite difference theory and therefore a significant part of its content

{20-25%) is no longer applicable. It clearly needs to be extensively

rewritten to bring it up to date with the program but, nevertheless, the

greater part of it still provides valuable insight into the content and
philosophy of STAGSC-1. The draft of example problems is not useful for
STAGSC-1 since the input of the problems described was written for the
previous version STAGSC and can no longer be used. This section will
describe and comment on the user's and theoretical manuals.

2.1 STAGSC-1 USER INSTRUCTIONS MANUAL

Ao already noted, the user input manual is largely self-contained and provides
the analyst with explicit instructions for problem execution together with
enough hackground material to provide a reasonable understanding of the
theoretical bhasis for the program.

09178-848:2
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The manual itself has ten sections ot which two minor ones are, as yet, not
issued. After a short introductory section there is a section describing the
general capabilities of STAGSC-1 together with some basic concepts on the
description of shell surfaces. The third section provides a detailed
description of each input data card and groups ot cards. There are nine such

groups as tollows:

Summary and Control Parameters
Computational Strategy Parameters
Data Tables

Geometry

Discretization

Boundary Conditions

Loads

Qutput Control

c € o o 0o O o © o

tlement Unit

A1l input is free format and allows the insertion of comments which is a
valuable teature from the archival viewpoint. Each input variable is assigned
a name which is usually the same as the internal variable name used in the
program. Branching to the next input card is governed by values of variables
previously set or is unconditional. This is unambiguous (at least as far as
the present evaluation is concerned--not all paths have been investigated) and
makes for reasonably trouble free input provided that the user takes
sufficient care. At the end of each input card description there are a number
of conditional "go to's" which lead to the next card or card group. This kind
of programming logic for input preparation is somewhat unusual but in the
opinion of the reviewer has much to recommend it. At this point it is
appropriate to mention a special concept in defining shell geometry which is a
basic feature of STAGSC-1. A shell structure may often be conveniently
described in terms of one or more distinct types of surface geometry (e.g.,
cylinder, cone, torus, etc.). Each such type can be defined in STAGSC-1 as a
"shell unit" with its own local coordinate system. Shell units may then be
connected to form the complete structure. Each shell unit has its own surface
coordinate grid (rows and columns) the nodes of which are enployed

(selectively or otherwise) to define element connectivity. 1If a region of the

0Y176-846:7
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shell has a geometry which does not lend itself to this treatment, nodes and
elements may be specified directly to form, what is referred to in STAGSC-]
terminology, as an element unit. Further details are discussed in Section 4.2.

The summary and control parameter group provide a title and define the
analysis type. The next group, computational strategy parameters, define the
following: Tload incrementation; eigenvalue extraction strategy (spectral
shift, eigenvalue range); time history forcing function input and integration
method; basic mesh summary for each shell unit (rows and columns); shell unit
interconnections; element unit summary (element types and number). The third
group (data tables) specifies all material properties, cross-sections of beam
elements, shell wall construction (multilayer, composite, etc.) and a table of
real and integer constants for use in user coded subroutines if required.

Shell unit surface geometry is defined in the fourth group. This may be
chosen from a library of standard forms (11 surfaces) or generated by a user
subroutine. A thirteenth option, to fit a surface to defined points by spline
functions, is indicated but not currently available. Shell wall type is also
specified in this group together with the type of strain-displacement
relationships (linear or nonlinear), elastic or elastic-plastic material
behavior and initial imperfections (if of trigonometric form).

The next major input group controls the finite element discretization. The
analyst may use the mesh defined in the shell geometry or specify an overlying
mesh of elements which picks shell mesh nodes selectively for element
connectivity. Patches of elements can be defined which allow changes in
element type; also segments of the mesh can be defined with different

spacing. In addition, the user may define the element connectivity through a
user subroutine. Also specified in this group are the location of discrete
stiffeners which may be eccentric with respect to the shell surface and can be
skewed with respect to the shell surface mesh.

Boundary conditions for shell units are specified in the sixth group. These
can be of a standard type (simple support, clamped, etc.) along a specified
edge of the shell or they may be selected degree of freedom types along the
edge which can be designated fixed or free. An additional distinction may be

09178-848B:2
(S3034) 7 7




|
i
l
!
|

drawn between boundary conditions applicable to incremental displacements or
basic displacements (pre-buckling, prestress). The seventh group controls the
applied loads, displacements and initial conditions (for dynamic analysis). A
concept is introduced here which is unusual in structural analysis programs,
i.e., the specification of loads, displacements or initial conditions in two
categories, A and B, which are independent. They are scaled by two
independent load factors PA and PB. The purpose of this is specifically

the determination of bifurcation buckling behavior for systems where there is
a fixed load, or prestress, defined by System B and an increasing load defined
by System A. At bifurcation the total stress is obtained from the sum of
System B stresses and System A multiplied by the eigenvalue. For non-buckling
analysis it is not necessary to specify both A and B systems. For a new user,
reading the documentation unaided, this concept can be rather puzzling at
first and the documentation should provide a little more discussion than it
does. However, in all other respects the description of loads input is quite
satisfactory.

Output control is input on the eighth group of data cards. Basically, the user
can control the frequency of printing displacements, stress resultants,
strains, stresses and point forces. The frequencies for each of the above

quantities are independently specified. These controls govern printout for
all elements in a given unit and must be specified separately for each unit.
In addition, certain selected stress or displacement components may be printed
at every step. Apart from this control, the manual recommends the use of the
post-processor STAPL. This, however, is geared mainly to the generation of
contour plots and does not currently fulfill many post-processing needs, e.g.,

time history of stresses or displacements or spatial distubution of stresses :
or displacements. A significant aid in this respect would be detailed N
descriptions of the model and solution data files (M@D and S@D) so that the i
data may be processed according to the user's needs in a separate program. ;

Such descriptions are not given in the documentation. All of the preceeding
input pertaining to the shell unit must be repeated for each shell unit in the
structure. Each shell unit, being independently defined, may be totally

R R AT

different with regard to each section of the input data which is part of the
( shell unit (qgeometry, elements, wall, material, etc.)

L N9178-848:2 8
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The tainal input group is for definition of an element unit. [his group
specities user point coordinates, element connectivity, point forces dt nodes
and distributed forces on elements. This part of the input is rather
unvuphisticated since input by cards requires specitication of edach and cvery
node point and its coordinates and edch element and its nodes. The only
alternative to this is to define node geometry and element connectivity by
means of user subroutines.

The fourth section of the manual describes the function and format of each of
the thirteen available user subroutines. The descriptions are reasonably
complete and each one provides a coded example.

Section five describes the input for the post-processor STAPL. The input
required is in free format, as in STAGS, and is straightforward. Currently
inuperational features are marked by an asterisk.

i
Section 6, dealing with modeling and strategy, is one of the most important éj
sections in the manual. It provides the user with valuable background f
information with regard to the type of analysis which should be performed to ']
solve a particular problem. It is in this section that one may discern the j?
basic philosophy of the STAGS series of programs. Put concisely, the .
fundamental viewpoint is that the purpose of shell analysis is determination

of the structural failure modes. For thin shells, this usually means either

static or dynamic collapse of the shell wall rather than a straightforward

exceeding of material stress or strain limits. Thus, STAGSC-1 is the result

ot an evolution of a basic nonlinear shell analysis capability with strong

cmphasis on bifurcation buckling. The dynamic counterparl has also been

developed and plastic material behavior included.

An indication of the degree of development of the nonlinear capability is

provided by the statement (in Section 6) ". . . it is suggested that nonlinear

static analysis be used as a matter of course. . ." on the grounds that if
nonlinear effects are insignificant, the nonlinear solution will converge in
one or two iterations and the extra cost will be negligible. General reasons
are discussed for the non-convergence of a problem. A few paragraphs are also
devoted Lo the problems of bifurcation buckling analysis.

091 /5-841:7
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The next subsection discusses modeling with STAGSC-1 using the shell unit 6
concept for geometlry description and also the use of the capability to
incorporate either discrete or “smeared" stiffeners. Uiscretization is

discussed next and is basically a description of the element library available

in STAGSC-1. This is of vital importance since it is the only place in the
documentation where the elements are described. 1t is adequate for general
information but does not provide the depth of detail which should be contained

in g proper theovetical descraiplion,

The final subsection deals with computational strategy. First, eigenvalue
analysis for both bifurcation buckling and vibration frequencies 1is

discussed. The subtleties of bifurcation buckling are highlighted (existence
of negative as well as positive eigenvalues) and also the choice of spectral
shift values. The general strategy of nonlinear analysis is covered next.

The user specified parameters NCUT (total number of times the load increment
may be halved) and NEWT (total number of times the factored matrix may be
computed) are also dealt with in some detail since they are guite subtle in
their effect on the modified Newton-Raphson procedure. Also, the internal
logic of the solution algorithm is quite complex in the way it makes decisions
with regard to refactoring or cutting the load step. As a result, even given
a careful reading of this section, the user may feel that he can exert more

control over the solution procedure than is actually the case. The parameters

'
2

DELX (tolerance criterion for displacement increments) and WUND (relaxation
factor) are also user specified and their use discussed.

TR

Finally, the use ot the transient integration operators i1s covered. Most of
the discussion deals with the central difference (explicit) operator and the
question of its conditional stability and how to estimate the critical time
step. The discussion of the implicit operators is less thorough and more
guidance on the appropriate choice for a given problem would be useful.

Surprisingly, there is hardly any reference to plasticity calculations in this

section. Given that plasticity is certain to enter into most nonlinear
calculations the omission is serious. It is, however, true that there is not

much oppurtunity for the user to exert control over the plasticity
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computations (other than via the specification of the uniaxial stress-strain
curve) and that the program handles them automatically. Some discussion on

limitations should be provided.

Section 7 of the manual attempts to provide user guidance on the
interpretation of output from STAGSC-1. Special problems which may arise
during linear, eigenvalue, nonlinear and transient analyses are presented and
appropriate actions suggested. While such a 1ist can never be complete, the
situations presented are basic and provide general guidance on how the user
should handle difficulties in execution.

Section 8 (Index to Volumes 1 and 2) and 9 (Execution Control) are in
preparation. An index to the users' manual (Vol. 2) is definitely a
necessity. A disadvantage of the way the input is structured is that it is

—_— e em ew wu 50 8 M

not easy to locate the place in the manual where a specific item is
discussed. For example, in order to determine what actions are required to
create a restart file it is necessary to trace through some of the input
groups in detail. A well constructed index would help the user of only
moderate experience very considerably. The proposed section on execution
control is perhaps of lesser importance since this must be different for each
system on which STAGSC-1 is installed.

Finally, Section 10 (Minimanual) provides a useful summary of all the input .b

records and the associated variable names. This can be also used as a '

stop-gap until a proper index is available. N

J 2.2 THEORETICAL MANUAL F
i

As indicated previously, the currently available theoretical manual was not
written in the context of the STAGSC-1 program. The latest version of the

,.,
I o

| program to which it truly applies is STAGSC, which is a finite difference
program whereas STAGSC-1 is wholly finite element. Thus, there are parts of

S -
o s o e

this volume which are still valid and others which are irrelevant and it is
part of the purpose of this subsection to identify the portions which remain

.

P

valid. The manual is organized into ten sections plus an appendix as follows:
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Introduction

Summary of Theory

Constitutive Relations (Elastic)
The Theory of Plasticity
Geometric Nonlinearities
Discretization Procedures

Beams and Stiffeners

Constraints and Transformations
Solution Procedures

o 5 ©0 O O o O o o o

Program Organization
Appendix

The current version of the manual is incomplete; Sections 7, 8, 10 and two
subsections of the Appendix are not yet available,.

The introductory section starts off with some general observations on
computer-based structural analysis and goes on to list the basic
approximations inherent in the STAGS program. It must again be emphasized
that many comments, observations and whole sections of this volume are not
appropriate to the STAGSC-1 version. This is already apparent in the
limitations described for first order shell theory. Since STAGSC-1 is finite
element based and there are no curved shell elements available in the program,
shell theory cannot be a part of the element formulation.*

Section 2 provides a summary of the basic theoretical principles embodied in
STAGS. First, there is a short discussion on variational principles in terms
of HamiVton's principle for dynamics which is shown to degenerate to the
principle of minimum potential energy for static systems. A point of interest
is that the conditions under which "live" pressure loads are conservative are
delineated. Thus, it is possible to include these in an analysis based in the
variational approach which is necessarily confined to conservative systems.
The basic theory of elasticity constitutive equations are presented and the

*The elements are all flat plate triangles or quadrilateral in which there is
no coupling of membrane and bending behavior within the element.

09178-848:2
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point made that the STAGS formulation is based on engineering strain.
Kinematic strain displacement relationships are developed for small strains
but with moderate rotations (<0.3 radians). These are Green's strain in

Lagrangian coordinates.

The third section presents a development of generalized elastic constitutive
relationships for combinations of shell wall and stiffeners.

Section 4 provides a reasonably up-to-date discussion of plasticity. First,
the classical development of plasticity theory is considered, incremental and
deformation theories are discussed with deformation theory being discarded for
general non-monotonic loading. Reverse plasticity and the Bauschinger effect
are also treated. On the basis of improved correlations with experiment
(compared with isotropic or kinematic hardening), the White-Besseling
(mechanical sublayer) theory is selected as being representative of more 1
modern theories of plastic work hardening behavior. It is, however, pointed g
out that for complex loading (non-monotonic and non-proportional), little is t
known about the applicability of currently available theories. The solution q
of plasticity problems using the pseudo-force and the tangential stiffness
methods is discussed. It is also indicated that STAGS uses a combined

approach by normally using the pseudo-force technique and updating the

s

stiffness matrix for plasticity effects whenever convergence behavior

indicates reformulation of the stiffness is required. This, however, is quite

misleading since the STAGSC-1 program does not include plasticity corrections
when formulating the stiffness. An additional feature of the plasticity

computations is the so-called subincrement approach. This is discussed later ]
in this report in Section 4.5 of the functional description.

Section 5 is entitled "Geometric Nonlinearities" but concentrates entirely on
the question of structural stability. Nevertheless, the discussion is very
thorough and reveals where the greatest depth of expertise, applied to the !
development of STAGS, lies. The concept of structural stability is developed

in terms of primary and secondary loading paths and the bifurcation point.

Various criteria for instability are discussed followed by the consequences of

instability and pre; and post-buckling behavior.

e
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The rest of the section discusses static stability analysis with a large

amount of qualitative detail. A short historical survey of analysis methods
is followed by a dissertation on flat plate huckling including post-huckling
behavior. This is followed by analysis of shells of revolution and general

1 shell buckling. For the user who is mainly preoccupied with shell stability
problems this section provides an excellent bhackground.

The next section (Section 6) is a major discussion on discretization
procedures. Unfortunately, much of it is no longer of direct consequence to
STAGSC-1 since it discusses finite difference procedures in some depth.

Also, the discussion on finite elements is somewhat out-of-date with respect
to the specific elements available in STAGSC-1. Nevertheless, the material
presented is of high quality and the contents of the section will be reviewed

here, at least in part.

The first three subsections give an overview of standard methods for numerical
differentiation and integration. This is followed by a discussion in some

depth of numerical solution procedures with considerable emphasis on finite

difference methods. Finite element procedures in general are discussed mainly
from the standpoint of continuity requirements for convergence. Topics
covered are CO, C] continuity requirements, conforming and non-conforming ?
elements, order of convergence and the patch test. The presentation is j
general and not specific to the STAGSC-1 program. With regard to the finite
difference versus the finite element approach, the point nf view of the

developers is, to quote verbatim;

"There is no clear distinction between the finite element method and the

finite difference energy method. It seems reasonable to define as a ;
finite element method a discretization scheme in which the displacement '
pattern inside the element is determined without the use of nodal
freedoms outside the closed domain of the element." ;

In the opinion of the reviewer, this perspective sheds some light on the
! reasons for the choice of program architecture in STAGSC-1. This will be ;
described in some detail in Section 3 but it can be said at this point that it

N917B-84R: 2
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is quite different from conventional finite element programs. Under the
heading of “Special Problems", the following topics are discussed briefly;
effects of reduced integration in producing spurious mechanisms; strains
produced by rigid body motion (super-parametric elements); the undesirability
of convergence from "below" for buckling analysis.

Finite difference schemes and some finite elements are discussed next. A
so-called "curved" finite element (STAGC) with incompatible (“bubble") modes
is discussed but does not appear to have been included in any available
version of the program. A flat plate quadrilateral element (STAGF) is
introduced next and the compatibility problems associated with modeling curved
shell surfaces with flat elements is discussed in some detail., It is
concluded that for displacement continuity, cubic variation of in-plane
displacement components normal to an edge is required in order to match the
cubic variation of transverse (bending) displacements. In addition, degrees
of freedom corresponding to average in-plane shear strain and rotation about
the surface normal are required at corner nodes. Thus, the complete element
is specified with seven freedoms at corner nodes and four at midside nodes (32
total). No derivation is provided.

The merits of Ahmad type elements for thin shell analysis are discussed and

finally the Clough-Felippa triangular and quadrilateral elements. The section
concludes by listing elements to be included in STAGS as follows:

R Wpat)

o Flat quadrilateral STAGF ?
0 Ahmad type elements

o Clough-Felippa triangle and quadrilateral

As will be detailed in Section 4, these are not the elements that are in the N
STAGSC-1 program, but it is clear that they are derivative versions of the .
Clough-Felippa series. Ahmad elements are not yet available. y

Section 7 (Beams and Stiffeners) and 8 (Constraints and Transformations) are
described as being in preparation.

09178-848:2 15
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Section 9, entitled “Solution Procedures”, is again one of the major part< ot

the theoretical wanual., Topics discussed are as follows:

Expressions for strain, kinetic and total potential energies
Linear equation systems '
Nonlinear equation systems

Eigenvalue analysis

cC O © © o

Transient analysis

‘ This section is probably the most mathematically detailed part of-~the
theoretical manual; it begins with statements of strain, kinetic and potential
! cnerygles and antroduces the concepl of a stittness operator L{x) which i<

detined as Lhe first variation ot the total putential energy. L(x) 15 detined

as generally nonlinear, thus, there is a departure from the moure tamiliar
ideas of linear and nonlinear stiffness matrices in the subsequent
developments.  The solution of linear systems of equations is presented in
terms of conventional triangular decomposition followed by forward and
backward substitution. There is also an important discussion of probleus
encountered in the solution process due to ill-conditioning. This gives
valuable insight into the meaning of the various diagnostic messages which may
be output during STAGS execution.

The solution of nonlinear equation systems is also discussed in depth,
beginning with a discussion of the relative merits of reqular and moditied
Newton-Raphson; successive substitution with nonlinearities on the right hand
side only; tangent stiffness incremental method with residual load correction;
dynamic relaxation and, finally, energy search methods. It is concluded that
the Newton-Raphson methods include the tangent stiffness methods as special
cases and that dynamic relaxation is not competitive. The discussion then
goes on to develop equations for regular and modified Newton-Raphson in terms
of the operator L{x) (there are, unfortunately, two errors in the equations
which require correction). It is stated that the user can involve either
regular or modified Newton-Raphson but this does not appear to be operational
in the version evaluated (see Section 4.5). It is also stated that the user

091/8-84B:2 16
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can choose to include material nonlinearities in reformulation of the
stiffness but, again, this is not available in STAGSC-). Plastic
nonlinearities are included as pseudo-force contributions to the loads vector.

Eigenvalue analysis is introduced in very general terms through use of the
nonlinear stiffness operator L(x). While concise, this treatment tends to be
somewhat obscure to the less mathematically inclined structural analyst.
Having stated the linear eigenvalue problem, the generation of the associated
matrices is developed in terms of second derivatives {"second variation") of
the potential energy. This step is revealing with respect to the programming
of STAGS since it appears that this is the basis of the algorithms
implemented. The solution of the eigenvalue problem is described in terms of
the inverse power method including a spectral shift. However, the actual
method employed in STAGS is not described in detail. This is unfortunate,
since the detailed treatment, which was to be included in the Appendix to the
theory manual, has not been written. As is described in Section 4.7, the
actual method used is a variation on the subspace iteration method, which is a

relatively recent development.

The final topic is transient integration, which is one of the strong features
of STAGSC-1. The treatment is good and is substantially more clear than some
of the preceding sections. Again, the subject is introduced in general terms
with a discussion of the solution of initial and boundary value probiems.
Explicit and implicit integration methods are defined. The explicit (central
difference) algorithm is presented and its conditional stability discussed.
There is also a lengthy discussion of implicit methods and their stability.
Data are presented for the stability boundaries (applicable to a linear
analysis) for a number of schemes, viz. Park, Wilson-e, Houbolt, Gear's 2nd
and 3rd order and the trapezoidal method. With regard to their stability for
nonlinear analyses it is pointed out that the criteria are not exactly valid
and that no method exists which is unconditionally stable.* It may be
difficult, therefore, to distinguish between physical and numerical
instability in the nonlinear case. It is concluded that energy balance checks
are advisable; however, STAGSC-1 is not, as yet, provided with this capability.

*See further discussion in Section 4.8.

17
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The Appendix section is incomplete, since it contains only a section on shell
theory, which is nol required for STAGSC-1.  Therce should alwo be moure
detailed information on the handling of plasticily, element formulation., Lhe

eigensulver and transient integration operators.

2.3 CONCLUSIONS

1t may be conciuded from the foregoing that there are some serious
deficiencies in the documentation for STAGSC-1. These are:

0 lack of any program description
o partial obsolescence of the theoretical manual

o} lack of a problem demonstration manual

On the positive side, it may be fairly stated that the quality of the existing
manuals is high and that they are written with the sophisticated user in

mind. Since STAGSC-1 is basically a nonlinear program, this is the right
approach. However, the availability of a complete set of manuals cannot be
predicted at the time of writing and it is to be hoped that some greater
priority will be given by the developers to this highly important aspect of

the program.
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3.0 PRUGRAM ARCHITECTURE

STAGSC-1 is the latest version of the STAGS series of programs developed over
the last 13 years or so. It is, however, a major departure from previous
versions since it is now entirely finite element, rather than finite
ditterence based. The program itself has been completely rewritten and
probably bears little resemblance to the earlier versions (although a
comparison of the current and earlier source listings has not been made to
verify this). However, inspection of the job control deck required for
execution shows that there are major differences in organization of the
program. The most obvious feature is that STAGSC-1 consists of two programs,
referred to as STAGS1 and STAGSZ2. STAGS! is a pre-processor which reads the
input qata, generates the finite element model, derives the nodal forces and

creates a file to preserve the data base for execution. STAGS2 then takes
over and performs the execution. A new feature is a separate post-processor,
STAPL, which provides geometry plots of the model and contour plots of the
solution variables. STAPL is not currently fully operational and has been
excluded from the evaluation. This section, therefore, will describe in some
depth the major features of the architecture of STAGSC-1.

The performance of this part of the evaluation has been hampered by the
complete lack of documentation on the programming aspects of STAGSC-1. In
addition, the lack of a revised theoretical manual has also made it difficult
for the most part to establish the algorithms embedded in the program. This
is especially true with respect to the creation of the stiffness and the

solution of egquations since the procedures involved are unusual.
3.1 GENERAL UDESCRIPTION

As already mentioned, the STAGSC-1 program is a system of three separate
programs, STAGS1, STAGSZ and STAPL. STAGS1 and STAGSZ2 are normally executed
in tandem with STAPL following or run in a stand-alone mode. The version of
STAGSC-1 which was evaluated was configured for the CDL-7600. Both STAGH1 and
STAGSZ are highly modularized with primary and secondary overlays. STAGS! has
eight primary and three secondary overlays while STAGS? has eight primary and
four secondary.

A rank s
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The organization of the program for the CDC-7600 using the SCOPE 2 system
(Version 2.1.5) utilizes the library file concept. Three files are created;
one for routines used in STAGS1, one for STAGS2 and the third for routines
used in both STAGS! and STAGSZ2.

The source coding is FORTRAN with a few routines written in assembly language
(COMPASS). However, equivalent FORTRAN coding is supplied in the form of
comment statements. The degree of commenting in the program is somewhat
variable. The majority of routines have at least some description of their
function; a number of others are rather fully commented while a few have no
comments at all. Overall, the commenting is adequate, but is not sufficient

to obviate the need for proper programming documentation.
3.2 STAGS1 - PRE-PROCESSOR

The overlay structure of STAGS! is shown schematically in Figures 3.1 and

3.2. The (0,0) overlay is a short main program which serves to load primary
and secondary overlays as required by the input data. As indicated by Fiqure
3.1, the main program calls overlays (1,0}, (2,0) and {7,0) directly and also
the other primary overlays through the subroutine PREVU. The direct calls are
for the purpose of determining core storage requirements. In addition, the
main program saves the model data generated on the file MOT.

0f the eight primary overlays, three are always loaded (6,0), (7,0) and (8,0);
these summarize the model input data, prepare the element stiffness data and
save the data base. The remaining five primary overlays are loaded
selectively depending on whether the model consists of shell units, an element
unit or both.

Similarly, the secondary overlays are loaded selectively depending on the
class of elements called for at input time (beam, quadrilateral or triangle).
A detailed set of diagrams showing the calls made to all subroutines are
provided in Section 9 (Appendix). The main program (Figure 9.1) also loads
the user subroutines (LUSER1) which may be required for definition of the
structural model (Figure 9.2}, Major subroutine functions are:

09748-868:2 20
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PHASE1-controls all pre-processing
LOVO-loads overlays from level O
ADATA-sets up data statements
BDATA-sets up node number and logical freedom lists

OVERLAY FUNCTIONAL DESCRIPTIONS

The primary and secondary overlays will each be described briefly in this

Overlay (1,0) - Program OVSU - Shell Unit Generation. Figure 9.4
shows the schematic representation of the routine calls made in this
overlay. The function of this overlay is to generate the underlying
mesh for the shell units and the stream of associated elements.
Control over the generation is via subroutine GENSU which calls the
major routines GINPT, MSHGEN, SUN and SUE. GINPT selects the type of
shell unit specified (cylinder, torus, etc. or defined by user
subroutine LAME) and defines its global orientation, wall
construction and reference surface imperfections (WIMP). MSHGEN
generates the underlying mesh when the spacing of the gridlines is
non-uniform. The actual nodal coordinates are computed, saved in a
node "table" and also printed out by the subroutine SUN; SUN also
checks for consistency in the mesh specified by the user. Element
connectivity is generated, stored and checked for consistency by
SUE. Schematics of calls made by SUN and SUE are given in Figures 9.5
and 9.6. The following routines establish the element data in the

shell unit configuration tables:

ATRIA
BEAM - beam elements

QUAD quadrilateral elements
QUIN transition elements
STIFIN - discrete stiffeners
TRI

]

alternating triangularization for quadrilateral elements

triangqular elements

3
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Overlay (2,0} - Pragram OVEU - Element Unit Generation.

The logic for element unit generation is similar to that for the
shell unit but simpler because there are no built in geometries
{Figure 9.7). Thus, subroutine EUN reads in node point numbers and
coordinates directly or through the user subroutine USKRPT.
Subroutine EUE generates element connectivity data according to
element type.

Overlay (6,0) - Program OVIS - Model Input Summary

This overlay creates files which contain all the additional data
required for the execution of the analysis. Input data, which is
entered in free-format is interpreted by subroutine CAKDS and
translated into an internal format. The master subroutine, PREMIS,
assembles the input data defining the analysis type, loading and
solution strategies, structural model definition and provides
descriptive output. In addition, PREMIS creates a beam cross-section
properties file, material properties file and shell-wall construction
file. Data defining the method of time integration (if used)} is also
loaded and saved (LOADT). The following subroutines perform major
functions as follows:

CARDS - interprets free-form input
ESP1D - generates White-Besseling plasticity data
RCONST - reads constraint conditions

TAB - tabulates beam section properties
TAM ~ tabulates user materials

TAP - tabulates user parameters

TAW - tabulates shell wall properties

Figure 9.8 shows the subroutine calls for this overlay.

4
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Overlay (7,0) - Program OVVU - Element Stiffness Preprocessor

The descriptive comments for this overlay use the terminology "unit
prevariational overlay" and "prepare variational data for unit". In
the context of STAGSC-1 this means that the functions performed are
preparatory to formulation of the stiffness matrix during execution
with STAGS2. Figure 9.9 indicates that the overlay loads the
secondary overlays (7,1}, (7,2) and (7,3). The computational flow is
controlled mainly by subroutine PREVU. PREVU processes all elements
for one shell unit at a time. It calls the element subroutines GSBM,
(JUAF and TRINC as required. These subroutines perform all necessary
geometric calculations, strain-displacement relationships,
integration point coordinates, weighting factors and contributions to

the mass matrix.

LOV7? - loads overlays from level 7

OVE22 - beam element overlay

GSBM - master routine for beam element generation

MASSE - assembles and transforms beam element mass matrix

MACUP - controls formulation and update of element constitutive matrix
OVE4]1 - plate element overlay

QUAF - master routine for quadrilateral plate generation

MAPXY - performs bilinear mapping

FDOF - finds integration weights and function formulas for bilinear
quadrilateral
MSH - finds coordinates and integration points

OVE31 - triangular element overlay
TRINC - master routine for triangutar element generation

Figures 9.9 through 9.14 contain full details of the subroutine
linkages in this overlay and the secondary overlays.

5




This completes the description of the major functions in program STAGS].
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Overlay (10,0) - Program OVSV - Data Base Preservation ‘

This overlay is a data management program to organize the
preprocessed information in mass storage in readiness for execution
by STAGS2. The subroutine linkages are shown in Figure 9.15.

Overlay (12,0) - Program OVSI - Shell Unit Intersection

Overlay (12,0), (Figure 9.16) has the sole purpose of checking the
interconnections between shell units for consistency and, where
inconsistencies are detected, removing them if possible.

Overlay (13,0) - Program OVSL - Shell Unit Loads

Figure 9.17 shows the subroutine calls for this overlay. Program
OVSL has a single call to subroutine LOADS which generates a loads
file for a given shell unit. LOADS generates consistent nodal forces
from applied loads and computes additions to the load vector
corresponding to imposed displacements. Output of the load file and
mass file is controlled by subroutines LOADOP and MASSOP.

Overlay (25,0) - Program OVEL - Element Unit Loads

Program OVEL (Figure 9.18) performs functions similar to OVSL for the
element unit., The controlling routine is LOADE with the force vector
being determined by FORCEE. FORCEE does not currently have as much
capability as FORCES in OVSL since it does not process distributed
loads.

6




3.3 STAGS? - Fxecution Phase

The structure of STAGS2 follows the same standard overlaying concept as
STAGS'. There are eight primary overlays and four secondary. Figure 3.3
shows the overlay links. The secondary overlays are listed with their

functions in Fiqure 3.4.

STAGS2 functions partly through subroutine CONTRL (Figure 9.19) and partly
through direct calls to the overlays. The direct calls are for the purpose of
determining storage requirements while CONTRL directs all analysis functions.
Also, STAGS2 loads user subroutines required during execution (LUSER2).

Details of the subroutine calls for STAGS2 are contained in the Appendix
(Figures 9.19 through 9.39).

A. Overlay (1,0) - Program OV10 - Data Transfer from Pre-processor

This program performs the many complex operations required to start
execution, either for a new problem or a restarted problem. Its main
functions are performed by three subroutines; ALLOC2, DATAIN, SETPAR,
and RSTRT. ALLOC? is itself a complex routine which determines block
sizes, assigns files, sets pointers for various operations (e.g.,

! stiffness matrix computation), determines working space in core and ?
' initializes file manager parameters. Subroutine DATAIN initializes :
parameters. SETPAR also performs parameter initialization, e.g., ;

N I initial conditions for a transient analysis. RSTRT controls a
' restart analysis. Subroutine links are shown in Figures 9.22 and h
‘ 9.23. o

B. Overlay (2,0) - Program 0V20 - Stiffness Matrix Decomposition

Program OV20 performs one of the crucial stages in the STAGSC-1

analysis, i.e., factorization of the stiffness. It first assembles
the total stiffness matrix from the element stiffness file in
subroutine ASEM. ASEM calls ASEM2 which adds the element
contributions. However, the actual operations are carried out by

(S3034) 7
25
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calling a CUMPASS coded subroutine ASEMA (Figure 9.24) which renders
the details sumewhat inaccessible to a reviewer. Tlhe decomposition
into upper and lower triangles is controlled by subroutine FACTOUK

with the actual reduction occurring in subroutine FACMD.

C. Overlay (3,0) - Program OV30 - Eigenvalue Solution

The eigenvalue solver is probably the most complex program in

STAGS?. Figure 9.25 provides details of the subhroutine links. The
major tuncbions dre driven by subroutine SIMIT which conlrols Lhe
computational flow for simultaneous iteration for a cluster of
eigenvalues. SIMIT determines the number of eigenvectors required as
I a subspace for the simultaneous inverse iteration, performs the
inverse interation and solves for the reduced set of eigenvectors

using the Householder tridiagonalization and QL method. The major
| subroutines in which these computations are performed are EIGEN

| (Figure 9.26) and SOLVE. EIGEN calls subroutines TREUZ and TQLZ
which are FURTRAN versions of ALGOL procedures originally developed
by Wilkinson, Martin and Reinsch.

U. OUverlay (4,0) Program UV40 - Formulation of Stiffness

The comments provided in the subroutines called by this overlay refer
to "second variation of strain energy". This terminology refers to
all the functions normally associated with the generation of

Figures 9.27, 9.28 and 9.29 show the subroutine links for the
overlay. The major routines called are VARZ, CVRZ, VK2 and VRUATA.
VARZ and CVR2 are the controlling routines which call VRDATA and
VRZ. VRUATA provides all the necessary information specific to the

f
f
i
!
1 stiffness matrices and this is indeed the function of the overlay.

element type while VR? performs the actual calculations of the
stitfness contributions at a given integration point. Nonlinear
terms are handled by VRZ and also effects due to live pressure
loads. Brief functional descriptions of significant routines are as
‘ follows:

0974B-86B:2 26
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SOBM - Forms strain-displacement matrix for a beam

FDRV - finds interpolating polynomials, 1st and 2nd partial
derivatives for quadrilateral elements

QUADF - performs integrations for quadrilaterals

£32LL - generates shape functions for live pressure loads on
triangular elements

TRIDUV - finds membrane strain-displacement matrix for
triangular elements

TRIDW2 - finds curvature-displacement matrix for triangular

| elements
PENAL - adds penalty terms to stiffness matrix

VR12D, VR22D - computes stiffness terms for one and two-dimensional
elements

E. Overlay (5,0) - Program 0V50 - First Variation of Strain Energy

The form and function of this overlay are geared directly to the
method of solution of the nonlinear equations. The modified
Newton-Raphson method, as described in Section 4.5, solves the
nonlinear system of equations iteratively and obtains the incremental

B AR SRR ATIARIS LUK o) A

displacement vector by the solution of the equation

g

. -1
(xypd = dxgr = = IO )T (KOg) xp1 - Ry 3.1

The nonlinear stiffness K(xm) is determined in overlay (4,0) |
(second variation of strain energy). This overlay forms the product o
K(xn)(xn) directly as the first variation of strain energy

and subtracts the contributions from the force vector (R}. The |
solution algorithm is discussed more fully in Section 4.5. i

Figures 9.30, 9.31 and 9.32 show the subroutine links for OV50. The

major subroutines called are ITER, CVR1, VR1 and SOLVE. ITER

controls the interations and checks convergence. The computation of

the first variation is controlled by CVR1. This pulls in all the ;
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necessary element information (VRDATA) required for computing the
tirst variation and pertorms the computation at an integration point
in VR1. Plasticity calculations are performed by the secondary
overlay (5,1) in program UV51. CVK1 loads program UV51 (Figure
9.31), which has major subroutines as fullows:

PLASTC - controls plasticity calculations at each integration point

PLAST - performs plastic stress calculations
tquation solving is pertormed in subroutines SOLVE and SWEEI.
Overlay (6,0) - Program OV60 - Dynamic Response

Program 0V60 performs the same function for dynamic response
calculations that OV50 does for static analysis. The procedures are
necessarily more complex because of the time integration. Figures
9.33 and 9.34 show the subroutine links. The controlling subroutine
for OV60 is DYNR which calls CVR1, OUES and EXPLC. CVR1 is the same
as OV50 and performs the same function, i.e., sets up the right hand
side vector for the nonlinear solution as the first variation of
strain energy. The dynamic response obtained using the explicit
integration operator does not reguire the solution of equations anu
is therefore called directly by DYNR. Solutions using implicit
integration operators are performed by subroutine ODES. OULS is &
general, multi-step ordinary differential equation solver and is
called once per time step. It controls the time step either in the
automatic mode or in the "fixed" mode in which it only intervenes it
the time step needs to be decreased. It alscg provides starting
procedures and handles damping. ODES calls MSTEP, SOLVE, NITER and
NEXT. MSTEP computes the predictor-corrector formulae tor the four
implicit schemes. There is also a link to a user defined operator by
a call to g user written subroutine USTEP. This capability is not
currently documented and is not included in LUSERZ. NITER controls
the iterations tor nonlinear equation solving with SOLVE providing

the solution procedure. Subroutine NLXT provides the coding for
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time step control. O0V60 calls a separate overlay for plasticity,
OVL61 in dynamic calculations, but this appears to be identical with
the plasticity routine used in static analysis OVL51 (Figqure 9.32).

G. Overlay (7,0) - Program OV70 - Solution Strategy.

Program OV70 is called by subroutine CUNTRL to control the static

nonlinear solution strategy. The controlling subroutine within OV70
is DATAT1 which controls the output for each load step and calls the
major subroutines STRAT, EQCHK, SDATA and OUTSLD. STRAT controls
Joad step size and adjusts it if necessary depending on the rate of
convergence. 1t also controls refactoring of the stiffness and

extrapolation of displacements for the next load step. Subroutine
EQCHK performs an overall equilibrium check but is disabled in the
version evaluated since the progrumming is not yet complete. SDATA

maintains the solution data file (S0D), plastic stress history and
also writes TAPE8 for nonlinear analysis in which periodic
eigen-solutions may be derived. Thus, estimates of bifurcation
buckling loads may be obtained at various points in a nonlinear
loading history. Finally, subroutine OUTSLD controls output of
selected displacements.

H. Overlay (10,0) - Program OV80 - Stress Computation and Output E

Overall control of stress and strain computation and output is ;
exercised through this overlay. A master routine SIGMA calls
secondary overlays (V81 and 0V82 and major subroutines OUTSLS, SRES, ?
VRDATA and PREFAB. SIGMA controls stress calculations element by ’ E
element. Element data is brought in by means of VRDATA. SRES
controls the actual calculation of strains and stress resultants.
l The secondary overlays OVB1 and 0QV82 do the element-specific ‘
computations; OV81 handles 1-D (beam) elements while QV8¢ deals with
the 2-D elements. Figures 9.37, Y.38 and 9.39 provide the details of ‘
the subroutine links.
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3.4 DATA MANAGEMENT '

The storage and retrieval of data in STAGSC-1 is accomplished by two separate l
schemes.  first, there s the need to transfer large files for vector and

matrix operations between core and mass storage. The size of the files may be i
particularly large when time integration is being performed and vectors must '
be made available for several time steps. Also, during an eigensolution,

twenty or thirty subspace vectors are being manipulated together with mass and

stiffness matrices. Second, there is the need to obtain relatively small

amounts of data from tables in order to generate element stiffness matrices or

calculate element stresses. These tables are themselves lengthy and the mode

of retrieval may be described as quasi-random access; this is because transfer

of successive sections of data may be from regions of the file which are

adjacent.

3.4.1 FILE MANAGER - FMM

FMM is a routine designed to manage working space in blank common for vector
and matrix manipulations. When FMM is called, the argument first identifies
the number of files to be Yocated simultaneously in core, a list of the file
numbers and their lengths and also a priority indication which says whether
the file is to be saved or not (in mass storage) when removed from core. FMM
provides as output the address in blank common of each file. During
execution, FMM checks if a given file is already in core; determines whether
the space required by the file is available; adds the file to core and
performs other housekeeping functions. The present version does not utilize
the LCM (large core memory) feature available on the CDC 7600.

FMM also makes use of a number of other utility routines for performing

specific operations. The subroutine calls may be found in the Appendix in
Figure 9.3.
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3.4.¢2 VIRTUAL MEMORY OPERATIONS - 1OGEIR.

The transfer of tabular data from mass storage into core is accomplished using
a buftrering technique. Such data are used in element matrix generation,
stress calculations, etc., and are stored as tables in one lengthy file. Un
the other hand, the data are needed only in relatively small blocks at any
time. The technigue used in writing the file is to divide it into a number of
records of convenient length. The record length is chosen so that typically 6
to 10 records can be accomodated in core at a given time. This process is
reasonably efficient since the required data are often in adjacent blocks if
not all in one block. The controlling subroutine is I0GETR, which searches
the buffer for the required record and reads it in if it is not already there
(having checked for space availability). If the buffer is full, the last
recurd is evicted and written to mass storage. IOGETR calls a few utility
subroutines and the links are shown in Figure 9.3.
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4.0 FUNCTIONAL DESCRIPTION

The purpose of this section is to provide a detailed overview of the major
capabilities and analytical methods used in STAGSC-1.

4.1 ANALYSIS OPTIONS

As outlined in the Introduction (Section 1), STAGSC-1 is a general purpose,
thin-shell, structural analysis program, designed principally for the
nonlinear static and dynamic analysis of thin shells. There are seven
different analysis options available to the user.

Linear static analysis

Bifurcation buckling analysis from a linear stress state
Small vibrations (stress free state)

Nonlinear static analysis

Bifurcation buckling analysis (nonlinear stress state)
Small vibrations (linear or nonlinear stress state)

O © © 0o O o o

Transient response analysis (linear or nonlinear)

4.1.1 LINEAR STATIC ANALYSIS

Although there are numerous general purpose finite element programs which
provide thin shell elements for linear static analysis, STAGSC-1 has a number
of features which make it an attractive choice for this application.
Specifically, these are: (i) built-in geometries for regular shell surfaces
such as cylinder, cone, flat plate, torus, sphere, etc.; (ii) user subroutine
capability for defining surface deviation with respect to some reference
surface; (iii) discrete surface stiffeners (both orthogonal and skewed); and
(iv) multilayer shell wall construction. Thus, complex shell geometries can
be modeled with relative ease.
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Loads may be applied directly at mesh points (defined by “row" and “column"
numbers--Section 4.?) as forces and/or moments, as line loads or moments or as
surface tractions. Their directions may be specified in global or local
surface directions. Thermal loads can also be generated by specifying
reference surface temperatures in a user coded subroutine. Temperature
variation in a stiffener cross-section may be prescribed (but no variation is
permitted through the shell wall thickness). Body forces can be specified by
means of acceleration vectors in both translation and rotation. Displacement
boundary conditions may be applied as discrete constraints at interior or
boundary mesh points or by specialized conditions (e.g., simple supports,
clamped, etc.) along shell boundary edges.

The range of basic capabilities for static analysis is therefore quite
adequate for simple stress/displacement analysis of thin shells and includes
unique features (such as the geometric deviations from a reference surface)
which are a definite incentive for its practical use.

4.1.2 BIFURCATION BUCKLING ANALYSIS

The analysis of bifurcation buckling of shells has been an important
capability in STAGS since it was introduced in an early version in about 1970
(see Figure 1.1). This part of the program is therefore one of the most
highly developed and would probably be a common reason for selection by a
potential user,

Bifurcation buckling can be investigated for structures which have linear or
nonlinear prebuckling stress states. An example of linear prestress is given
by a flat plate with in-plane loading only. Bifurcation buckling is then
defined as the value of the load at which a laterally displaced configuration
can also be in equilibrium (secondary loading path). A shell of revolution,
such as a shallow spherical cap, will exhibit nonlinear prebuckling behavior.
Under antisymmetric loading, the shell softens or stiffens depending on the
loading direction (e.g., external or internal pressure). Bifurcation buckling
may then occur as a nonsymmetric deformation mode. Figure 4.1 shows the
characteristic hehavior of systems which exhibit linear and nonlinear
prebuckling primary load paths.
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For a simple linear prebuckling problem, the eigenvalue analysis provides the
multiplier by which the basic applied load system must be factored to obtain
the critical load level. STAGS allows for the specification of two
independent load systems (FA) and (FB) which are characterized by

and P_. Thus, for example, a cylinder with internal

A B
pressure and axial compression will require the axial load to be designated as

multipliers P

System A and the pressure as System B. For a given pressure loading, the

v

e

total magnitude of the two load systems will be H

(FirgraL = » Pa (Fa) *+ Pg {Fg} 4.1 f

where Ao is the eigenvalue at bifurcation.

The case of bifurcation buckling analysis with a nonlinear prebuckling stress
state is an option with far less general applicability. However, the more
sophisticated user who needs to perform a nonlinear collapse analysis for a
general shell can take advantage of a number of subtleties which the nonlinear
bifurcation capability provides. The STAGS theoretical manual [3] offers a
very detailed and thorough discussion of bifurcation buckling and collapse
analysis. Almroth and Brogan [5] give a number of examples in which the
nonlinear collapse loads are calculated and compared with bifurcation buckling
loads obtained using linear prebuckling analysis. It is shown the linear

bifurcation loads may be greater or less than actual nonlinear collapse ;
loads. For example, an elliptic cone undergoing uniform end shortening will
collapse at a load over twice that predicted by linear bifurcation, while a
cylindrical panel with its ends simply supported ("venetian blind" model) will ,
collapse at a load five times smaller than the bifurcation load. The ?b
usefulness of the nonlinear bifurcation analysis appears to be in its :
application as an adjunct to a full nonlinear collapse analysis. If nonlinear
collapse analysis is performed on an imperfection sensitive structure, the

analysis may fail due to ill-conditioning of the equations at some load step.
A bifurcation buckling analysis carried out at this point will yield a

buckling mode which will indicate the type of imperfection which will direct
the solution into the secondary path (see Figure 4.1(b)). Another practical
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situation is where a nonlinear analysis is carried out only up to a design

load. A nonlinear bifurcation analysis at this point will provide an estimate
of the remaining margin to collapse.

4.1.3 SMALL VIBRATION ANALYSIS

The capability of STAGSC-1 with respect to vibration mode analysis is very
similar to the bifurcation buckling capability. An eigenvalue solution for
vibration modes and frequencies may be obtained for a stress-free structure or
for a linear or nonlinear stress state. This is particularly relevant for the
analysis of shell structures where the presence of pressure loading {internal
or external to the shell) is common prior to dynamic loading.

In the case of vibration all eigenvalues will be positive, whereas in the case
of bifurcation buckling negative eigenvalues may be obtained (e.g., in a shear
loaded plate).

In both the bifurcation and vibration analysis options, it is possible to
define by input a uniform stress state directly in terms of direct and shear
stress resultants as an alternative to the generation of such stress states by
means of applied loads, displacements or temperatures.

STAGSC-1 also permits the user to specify concentrated (lumped) masses
directly at node points. It should be noted that lumped rotational inertias
cannot be specified.

A further limitation appears to be that vibration modes for unsupported
structures ("free-free") cannot be determined because the eigensolver needs to
solve the system equations. Rigid body constraints will permit a solution to
be obtained.

4.1.4 NONLINEAR STATIC ANALYSIS

Both geometric (large displacements) and material nonlinearities can be
included in a STAGSC-1 analysis. The geometrically nonlinear analysis is
based on the following;
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A. Small strain based on engineering stress and strain relationships
(e <0.1)

B. Strain-displacement equations retaining nonlinear rotation terms

(moderate rotations <0.3 radians)

C. Incremental solution of equations with iterations within each

increment using the modified Newton-Raphson method.

Material nonlinearities considered are due to plasticity only. No creep or
viscoelastic behavior is incorporated in STAGSC-1. Plasticity is handled
according to the White-Besseling theory [7]. This is equivalent to
elastic-perfectly plastic behavior, bilinear kinematic hardening or
multilinear hardening depending on the number of plastic parameters
specified. The theory is outlined in greater detail in Section 4.4,

The plastic strains are computed and used to generate pseudo-force vectors,
i.e., an initial strain method is implemented.

4.1.5 TRANSIENT RESPONSE ANALYSIS

This capability represents one of the major strengths of the STAGSC-1 program
since, like the bifurcation analysis, it has been under development for a
number of years. The program can solve transient problems with a wide range
of excitation using one of five different transient integration operators.
System damping may be introduced as Rayleigh viscous damping, with constant
stiffness and mass matrix multipliers, plus an additional contribution from
velocity dependent forces. In addition, the full range of nonlinearities
available for static analysis can be utilized in transient response.

Forcing functions may be specified in terms of nodal loading or displacement
patterns, with time dependencies either (a) according to certain specified

formats or (b) input through a user coded subroutine (FORCET). The specified
formats are:
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0 piecewise Yinear function
0 trigonometric function

0 exponential decay

In addition, initial velocities and displacements can be specified for any
degrees of freedom.

The integration operators implemented in STAGSC-1 are as follows:

o explicit (central difference)
o implicit (trapezoidal, Gear 2nd and 3rd order, and Park's method)

The time step for the central difference method is, of course, fixed and must
be selected by the user. For the implicit methods, either a fixed time step
may be used or there is an internal algorithm for automatic time step
control. The automatic feature is, however, presently regarded as
experimental by the developers.

4.2 SURFACE AND MESH GEOMETRY

The STAGSC-1 philosophy for developing the shell geometry and finite element
discretization contains some rather unfamiliar concepts and terminology. A
central notion is that of the so-called "shell unit". This can refer to the
description of a specific portion of the shell surface or to the whole
surface. The complete shell may be defined using up to thirty shell units.

In addition, or as an alternative, the structure can be defined in terms of an
element unit. The basic distinction between these two concepts is that the
shell unit defines a geometric surface with a rectangular grid work mapped
onto the surface, while the element unit is actually a direct assemblage of
elements which may or may not define a shell.

The shell unit grid is then overlaid with a mesh of finite elements which may

use all gridpoints of the shell unit or only a subset. This concept allows
the use of a library of standard shell geometries {e.g., cylinder, sphere,
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torus, etc.) which may then be adapted to model cutouts or stiffened areas by
the appropriate omission or addition of elements. Discrete stiffeners may

also be attached along arbitrary paths on the shell surface.
4,2.1 SURFACE GEOMETRY LIBRARY

There are eleven standard geometries in STAGSC-) which are selected using the
input key ISHELL. The geometries are listed in Table 4.1

Each geometry has four edges, two of which may be subsequently joined to each
other to form a closed surface (except for the rectangle and quadrilateral).

Alternatively, edges may be joined to other shell units or may have boundary

conditions applied.
4.2.2 USER DEFINED SURFACE GEOMETRY

This may be accomplished using the user-coded subroutine LAME. This
subroutine may define global coordinates for the surface and their first order
derivatives if flat elements are being used. This is currently the only
usable option but, anticipating the introduction of curved elements, the user
can define directly the coefficients of the first and second fundamental forms
or, alternatively, all the derivatives necessary for internal computation of
the coefficients.

4.2.3 SURFACE GRID AND ELEMENT MESH i

Given that a reference surface geometry has been defined, a gridwork must be
mapped onto the surface. In its simplest form, this is accomplished by
specifying numbers of rows and columns which generates a regular gridwork in

T SRy A

terms of the surface coordinates. Additional options are:

e e

0 irregular grid spacing by means of definition of different segments

e e

o grid definition by user subroutine IUGRID

The element mesh is conceptually distinct from the surface grid. This is
specified separately and may be defined in a number of ways. In its simplest )
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form, the element mesh is identical with the surface qrid in that all grid
points define element nodes. Alternatives are:

A. Irregular mesh in which cutouts can be defined.

B. Specialized mesh in which grid points are used selectively and a mesh
of varying refinement can be obtained.

C. Subregion or “"patch" concept in which groups of elements are defined
within certain row and column boundaries. This allows use of
different element types in different regions of the shell surface.

4.2.4 ELEMENT UNITS

An element unit can be defined as a "stand-alone" unit which describes the
total structure or it may be used in conjunction with a shell unit. In the
latter case, element unit nodes can be nodes on the shell unit or separately
defined (auxiliary) nodes or a combination. Thus, parts of the structure
which are not shell-like can be connected to the shell. This is in addition
to the capability which exists in shell units for specifying stiffeners on the
shell surface.

Node geometry for the element unit must be defined individually for each node
or by means of the user subroutine USRPT or by a combination of both. No
other options are available.

The directions of the degrees of freedom can be separately defined for the
auxiliary nodes in the element unit.

4.3 FINITE ELEMENT LIBRARY

The core of the finite element library in STAGSC-1 is the series of triangular
and quadrilateral shell eiements based on the Clough-Felippa quadrilateral
bending element [8]. Since these are all flat elements, the actual curved
shell geometry is always approximated by a faceted surface. This has
implications for interelement compatibility which will be discussed later.
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In addition to the shell elements there are membrane versions of the elements
and also a series of beam elements designed to be compatible with the shells.
STAGSC-1 also has provision for a series of general linear and nonlinear
springs and also transition membrane and plate elements. The latter are
designed for regions of changing mesh refinement. Neither the springs nor the
transition elements were implemented in the version of the program under
evaluation. In total, there are twenty elements currently available in
STAGSC-1, of which six are beam elements and fourteen are membrane and shell
elements., Table 4.2 provides a summary description of the elements

implemented.

The bar and beam elements are fairly standard except for 220 and 221 which
have quadratic shape functions for twist. The inclusion of the center node
makes them compatible with the majority of the shell elements in STAGSC-1.
Also, the center node provides better results when displacements (rotations)
are relatively large. For a general thin shell analysis program such as
STAGSC-1, the single most important aspect of the program has to be the
properties and performance of the shell elements themselves. As has already
been mentioned, STAGSC-1 does not, at present, have available a curved shell
element and this introduces inevitable incompatibilities. However,
considerable effort has been spent by the developers on minimizing these

shortcomings.

The basis for both the triangular and gquadrilateral elements is the
Clough-Felippa triangle (LCCT-12 in Reference 8). This is a triangular
bending element consisting of 3 sub-elements with interior nodes condensed
out. The lateral displacements have therefore a piecewise cubic
distribution. The addition of in-plane degrees of freedom and membrane shape
functions gives rise to the quadrilateral element. Reference 8 describes a
guadrilateral bending element (Q-19) which is derived from four LCCT-12
elements with the internal freedoms condensed out and the mid-side rotations
on the four other edges constrained to be the average of the adjacent nodal
components., The 420 (QUARC) elements are variants of the Q-19 element with
the addition of translational freedoms at the mid-side nodes parallel and

normal to the edges. Table 4.2 gives details of the resulting shape functions.
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The 410 (QUAF) elements were specially developed to remove the displacement
incompatibility which exists when flat shell elements do not lie in one

plane. 1f edge displacements are to be compatible, then the transverse
displacement shape functions must be of the same order as the in-plane
functions. The in-plane functions must therefore be cubic. This was
accomplished in element 410 by introducing a normal rotation at each of four
corners. Element 411 carried this one step further by introducing 2 rotations
at each corner, thus permitting individual rotation of each adjacent side and
thereby permitting shear strain at the corner. In addition, tangential
displacements at mid-side nodes are also included in this element.

4.4 CONSTITUTIVE RELATIONSHIPS

The number of constitutive behavior models available in STAGSC-1 is somewhat
limited. Orthotropic elastic behavior and plasticity are the two major
options. Creep or viscoelasticity are not available in the present version of
STAGSC-1.*

Elastic properties are specified with respect to principal material directions
for an orthotropic material. Specialization to the isotropic case is

trivial. Plasticity is based on the White-Besseling (mechanical sublayer)
model. The theoretical manual [3] discusses various types of plastic
constitutive behavior and describes the White-Besseling model in some detail.
An advantage of the W-B model is that the uniaxial stress-strain curve can be
represented with fair accuracy by choosing a sufficient number of components
(or "sublayers"). The minimum number of components (2) automatically yields
the bilinear kinematic hardening theory.

The input of material properties is based on the specification of a material
tvpe number. Up to 30 different material types may be specified. In this way
different material properties can be assigned to different regions of the
structure (as defined by different shell units). Also, mutilayered,

*Development of a creep version is being sponsored by NSRDC. The creep
implementation is to be the same as in the BOSOR 4 program [4].
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composite-shell-wall construction can be simulated by defining different
orthotropic properties for each layer, There is no provision for
incorpaorating temperature dependence of material properties. Although the
users manual [2] states otherwise, material properties cannot vary

continuously through the wall thickness.

The elastic properties may also be input through a user written subroutine
WALL. This gives the user the ability to vary the elastic coefficients
continuously over the shell surface. The elastic-plastic stress-strain data,
however, can only be input via cards. Any variation throughout the structure

must be defined by varying the material type.

In summary, the constitutive capability in STAGSC-1 is adequate for shell
structures operating in an environment where temperatures are below the creep
range for the material. A simplified approximation to elastic temperature
dependence could conceivably be achieved through the user subroutine WALL by
correlating temperature, spatial position and elastic properties.

4.5 LINEAR AND NONLINEAR ANALYSIS

STAGSC-1 is primarily a tool for nonlinear analysis although a purely linear
analysis option is available and is very economical. Therefore, linear static
and dynamic analyses may be appropriately performed for shell problems using
STAGSC-1 because of its many features which facilitate the analysis of
stiffened or unstiffened shells (see Sections 4.1, 4.2, 4.9 and 4.13).
However, the bulk of the developmental effort behind STAGSC-1 has been devoted
to its nonlinear solution algorithms and to the implementation of a finite
element library. It is in this context that the program must mainly be
discussed.

The basic method of equation solving is the modified Newton-Raphson method
(MNR), with periodic updating of the stiffness ("refactoring" in STAGSC-1
terminology). The program is self-adaptive to a certain extent in that it can
switch to a full Newton-Raphson method (FNR) if indicated by convergence
behavior. It must be pointed out, however, that the handling of
nonlinearities due to plasticity is by the initial strain method. Thus, the
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stiffness matrix is never modified to reflect changes due to the current
material state. In these circumstances, the method must be viewed as a hybrid

technique.

In order to discuss the solution procedure more specifically, some basic
equations will be developed. For a static, nonlinear problem the equations of
equilibrium may be written as a Taylor expansion of the total force vector
[F(x)] (sum of applied, restoring and residual force vectors) about the

currently deformed state;

a{F} ,
(F(x_,1)1 = (F(x )} + — | _ ({x_..} - {x_}) + terms of higher
n+1 n a{x} {x} = (xn} n+l n order
- a{F} . .
{Fx )y + 00 I @)= ix,) {ox} + terms of higher order
=0 4.2

K )

]
nonlinear stiffness matrix [K(xn)].

In this notation, the derivative is the negative of the

A fundamental concept of the STAGSC-1 program is to treat the product vector
[K(x)]{ax} as a nonlinear operator L acting on the incremental
displacements. Thus, equation 4.2 becomes:

{F(xn+])) = {L(xn)) - {R} *+ (higher order terms) = 0 4.3

where the operator L is the first derivative of the strain energy functional.
The nonlinear stiffness matrix [K(x)] is then the first derivative of L,
[L'(x)]. The significance of this goes far beyond the formal statement of the
equilibrium conditions because the nonlinear solution algorithm is based on
the direct formulation of {L'(x)}. This has important advantages in the
implementation of the Newton-Raphson method. This may be stated in the
following terms

-1
ot = g = (L] F(x )y or
- ' -1
(Xt = o = [Lx )T (R - (L(x ) y) 4.4
47
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Fquation 4.4 implies a full update of the stiffness matrix and re-solution
(refactoring in STAGS terminology) at each iteration. Basically, a modified
Newton-Raphson procedhre is implemented which performs a refactoring of the
stiffness only when indicated by convergence criteria. The MNR algorithm
implemented in STAGSC-1 can be written then as

D) - ) = L (x0T (RY - dL(x))) 4.5

where [L(xn] is represented by the factored stiffness matrix obtained at
some previous iteration or step. The operator L(xn) is, however, defined
for the current solution vector (xn} since it is formed directly as a
vector.

The nonlinearities included in the computation of L(xn) are purely geometric
and plasticity effects are handled separately as pseudo-force contributions to
the loading vector {R}. Thus, plasticity corrections are computed after

each MNR iteration and the modified vector {R} is then used in the next
iteration.

Figure 4.2 illustrates the MNR algorithm and plasticity solution in an overall
sense as implemented in STAGSC-1. It should be pointed out that this is a
conceptual flow chart and does not represent the actual program flow.

The parameters over which the user has control at the time of input are

total number of times the step size may be cut (NCUT)
total number of refactorings allowed (NEWT)

initial solution estimate (NSTRAT)

convergence tolerance (DELEX)

relaxation factor (WUND)

o © O O o

By the use of a negative value of NEWT, refactoring can be enforced at desired
load step intervals (including every iteration). Note: the program
automatically doubles the load step after two successive steps with single
iteration convergence.
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methods for solving nonlinear problems, conclude that the MNR method is

probably one of the most widely used for general nonlinear problems and that

Tillerson, Stricklin and Haisler [9] in their excellent survey of numerical I

for structural problems it is best suited for those in which geometric

nonlinearities predominate. Some doubts are expressed about including ’
material nonlinearities because of the problem of unloading. The situation

can arise using MNR where elastic unloading is not correctly handled because

the factored stiffness corresponds to a "tangent" stiffness based on a prior

loading step. On the other hand, Bushnell [10] describes a subincremental

plasticity fomulation in which plasticity calculations are performed outside

an inner Newton-Raphson loop. The question of plastic unloading was not

discussed, however.

The STAGSC-1 method of plasticity calculations between MNR iterations appears
therefore to raise some questions about its use in dynamic plastic or static
cyclic loading problems.

The STAGSC-1 implementation of MNR seems to be basically efficient in that the
direct calculation of the vector {L{x)} (eas. 4.4, 4.5) is analogous to

the method of calculating a pseudo-force vector to account for

nonlinearities. Moreover, the strategy parameters available to the user
provide a degree of control over the MNR procedure which is not available in
other programs, e.g., ADINA [11,12].

4.6 SOLUTION OF EQUATIONS

STAGSC-1 employs a conventional Cholesky triangular decomposition with forward
and backward substitution for solution of equations. Storage is based on the
"skyline" vector concept in which no zero elements beyond the last non-zero
element in a row are stored. The skyline vector stores the location of the
last non-zero element in a given row. The procedure is outlined in the
theoretical manual [3] and discussions may be found in the literature, e.q.,
Bathe and Wilson [13]. No other solution options are currently available in
the program.
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4.7 FEIGENVALUE ANALYSIS

Eigenvalue analysis is required for both buckling and vibration analyses. In
principle, there is no fundamental difference between the two eigenvalue
problems., However, in practice, the bifurcation buckling problem requires
solution normally only for the smallest buckling load. For certain types of
buckling (e.g., pure membrane shear) there can be eigenvalues which are equal
but opposite in sign. For vibration problems, the eigenvalues must always be
positive and a large set of eigenvalues and eigenvectors may need to be
determined. Thus, there is a need to employ a method which is suitable for
both types of problem and which is relatively "rugged," i.e., capable of
yielding satisfactory solutions for a wide variety of modeling situations.
The method implemented in STAGSC-1 is basically the subspace iteration
method. This is described in depth by Bathe and Wilson [13] and somewhat
sketchily in the theoretical manual [3]. Curiously, the manual does not state
explicitly that this is the technique being used.

Subspace iteration, as described in Ref. [13] simultaneously obtains a reduced
number of eigenvectors. An initial choice is made of a set of preliminary
independent vectors X which are said to span a subspace of the complete set of
M eigenvectors. A single inverse iteration step is performed in which a new
set X is obtained from solution of the equation

KX = MX, 4.6

where both K and M are of order mxm and X and X are of order mxp. A new

eigenvalue problem is then solved in terms of the reduced matrices K and M -
which are obtained from d
:
K =%tk X (pxp) 4.7
and .
M=xm¥. (pxp) 4.8
The reduced eigenvalue problem can be stated as KQ = A MQ 4.9

where A is the matrix of eigenvalues.
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An improved estimate of the subspace vectors X is then obtained as

X = XQ 4.10

at which point the whole process is then repeated.

STAGSC-1 implements this method with some modifications. As is pointed out by
Bathe [13], several inverse iteration steps may be performed before solving
the reduced eigenvalue problem (in order to reduce the number of
eigensolutions performed). This is done in STAGSC-1, with orthonormalization
of the subspace vectors with respect to K or M at each step of the iteration.
Normally, two inverse iterations are performed at the start and three (per
eigensolution) after the first reduced eigensolution. Two other extra
features are incorporated. The first is the introduction of a spectral shift
parameter o in the inverse iteration sweep. Thus the solution obtained is

for the equations

[K - oM] X = MX 4.1

and the eigenvalues obtained for the reduced system are

A* =N - gl 4.12

The second modification is to accelerate the convergence of the
orthonormalized vectors by means of Chebyshev polynomials. This step is
performed before the solution of the reduced eigensystem. According to the
developers, this technique has been known to be not always effective,
particularly with some computer installations. Its use is controlied
internally and depends on the convergence. Figure 4.3 provides a qualitative
flow chart of the major functions in the eigensolution system. The method of
solving the reduced eigenvalue problem is a combination of Householder's
tridiagonalization transformations with the QR method of extracting

eigenvalues.
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4.8 TRANSIENT INTEGRATION

' Transient dynamic analysis for linear and nonlinear shell structures is one of
the major capabilities in STAGSC-1. The numerical integration with respect to

‘ t ime of the equations of motion can be accomplished for general time histories

A of applied load or displacement. The program contains a library of five

) different algorithms for performing the transient integration which consists
of one explicit scheme (central difference) and four implicit methods. The

implicit schemes are as follows:

. Trapezoidal (Newmark, g = 1/4)
Gear's second order

Gear's third order

. K.C. Park's method

o O oo >
.

It is clear at the outset, that for such an array of options for implicit time
integration to be useful, the program user needs to possess a greater than

I L At B

average level of sophistication in order to make an appropriate choice. The
users manual [2] seeks to minimize this difficulty by generally recommending

!

the trapezoidal rule for linear structures and the Park method for nonlinear
structures. The theoretica) manual [3] discusses the background of the central

difference (explicit) method as well as the implicit methods. In order to aid
in the discussion of these methods, Figure 4.4 has been provided in an attempt
to make clear the basic differences between the methods available in STAGSC-1

and other methods in common use. The characteristics of the STAGSC-1 methods i

with regard to stability, numerical damping and frequency distortion

(dispersion) are summarized in Table 4.3. Although the central difference ‘F

method has been implemented, it is not particularly well suited to its use in ?

shell problems where lower frequency modes usually dominate the response of ‘F

the system. The low stability limit requires a very small time step which can J
i largely offset the inherent efficiency of the explicit approach. For the {

majority of problems therefore, the concern must be with the relative merits
of the four implicit methods provided. With the exception of Gear's 3rd order F 4
method (G3), the implicit methods are unconditionally stable for linear P
conservative systems. This is referred to in the literature as A-stability ;ﬁ
[15,16]. G has a very small region of instability for a combination of P

ol &
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small time steps, low frequency and low damping. For non-conservative
systems, G?, Gy and the K.C. Park method (KCP) are conditionally stable as
are the Wilson-e and Houbolt methods. The trapezoidal method is not stable

under these circumstances.

The question of greater interest to a potential user of STAGSC-1 is the
performance of these methods in the context of nonlinear response. The
stability of time-integration operators for nonlinear structural dynamics
problems has also been discussed in the literature (e.g., Refs. 16 and 17).
Implicit operators which are unconditionally stable for linear problems have
been observed to exhibit instability in some nonlinear problems. The
inference has been drawn that the stability properties of the implicit
operators are lost or modified in the nonlinear regime. Reference 17
(Belytschko an Schoeberle) presents an energy-based proof of unconditional
stability for the Newmark-g method (s=1/4) for the case of material
nonlinearity. The proof is subject to the restriction that the internal
energy must increase monotonically with strain and remain positive-definite.
The assumption is made that the unconditional stability is preserved when
geometric nonlinearities are also present provided that the requirements on

the internal energy are still met. It is concluded that the loss of stability

in some applications is due to errors accumulated during the solution process
and not to the integration operator per se.

A somewhat different conclusion is arrived at in Reference 15 (Park) in which
nonlinear stability equations for a number of implicit operators are
developed. These criteria apparently include the character of the
nonlinearity (e.g., hardening or softening). Stability boundaries are
obtained for the Houbolt, Wilson, Park and Newmark-g methods. It is
concluded that the approximations inherent in the solution procedures
(initial-strain or tangent stiffness methods) are responsible for the
departures from unconditional stability.

Thus, in a sense, both evaluations arrive at the same conclusion (i.e.,
unconditional stability is affected by solution approximations) but the
implications are quite different.
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[t would appear that on the basis of stability the methods provided are

probably quite satisfactory for nonlinear analysis, but the user ought to be
aware that any given problem should be evaluated with respect to its likely
nonlinear behavior when choosing the method of integration. With respect to
accuracy, the four implicit methods are comparable. It does appear, for a
nonlinear response that the damping and dispersion of KCP are better than the
Houbolt method.

4.9 USER CODED SUBROUTINES

As may be expected in a program developed for the solution of nonlinear
problems, STAGSC-1 has a significant capability for the user to provide his
own coding for problem specification and execution. Thus, there are a total
of thirteen dummy subroutines in the program for which the user can provide
FORTRAN coding. Some of the subroutines provide additional capability while
others are mainly used to reduce the bulk of input data. Each of the
subroutines will be briefly described and commented on.

A. CROSS--This routine defines cross-section dimensions and material
properties for beams and stiffeners. Geometry and material type can
be specified as functions of spatial coordinates. Used in addition
to, or instead of data cards.

B. FORCET--Describes variation of load factor with time for load system
A or B. Used instead of data cards.

C. UGRID--Allows independent specification of grid coordinates for mesh
generation in terms of reference surface geometry. Necessary for
quadrilateral elements in a quadrilateral plate.

D. LAME--Allows definition of a shell unit geometry not included in the
twelve built-in options.

E. SKEWS--Defines orientation on shell surface of the attachment line of
a discrete stiffener which does not follow the reference surface

gridlines,
09188-848:2 54
(S3034) 19

- R

B o




F. TEMP--This is the only means by which temperatures can be specified.
Temperatures can vary with surface coordinates and through a
stiffener cross-section.

iz SRR

G. UCONST--Defines linear constraint conditions using Lagrange
multipliers. Must not be used with explicit integration.

H. UPRESS--Defines space and time variation of pressure loads. Pressure
may be “follower" or "live" loading.

I. USRLD--Defines spatial variation of loads including initial
displacements and velocities. Saves preparation of bulky sets of
data cards.

J. USRELT--Defines element connectivity for an element unit. Essential
when there are more than a few elements.

K. USRPT--Defines node point geometry for element units. Essential when
there are more than a few nodes. May also define additional points
in a shell unit.

} L. WALL--Defines shell wall construction (layers, composite material,
d stiffeners, wall thickness) and material properties which may vary
over the reference surface. Material properties may not vary within
a layer. Does not apply to plasticity data.

M. WIMP--Defines small, geometric perturbations of the shell from the
reference surface in terms of first spatial derivatives.

4,10 RESTART CAPABILITY

For practical, nonlinear structural analysis, a useful computer program must

jnclude a flexible restart capability. Ideally, the user should be able to ‘

restart the analysis at any desired point so that a different loading strategy Ei

may be used or perhaps an eigenvalue solution obtained. STAGSC-1 has such a
‘ capability. At the user's option, three separate files may be saved for
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restart (TAPE22, ?3 and 24). The solution is saved on TAPF?2 while TAPE 73
and TAPE?4 contains the stiffness matrix and the factored stiffness matrix.
Normally, upon restart, refactorization occurs but the user can override this
by using TAPE24. The contents of TAPE22 include displacements, velocities and
plastic strains, depending on the type of analysis. Additionally, stresses,
strains and stress resultants can be saved on the same file for

post-processing.

STAGSC-1 provides the option to save data either at every load (time) step or
from the final three steps. This could be improved by permitting saving at
specified load step intervals as in the MARC program. The advantage of this
is that the flexibilily to restart at a number of stages is retained but with
substantial savings in file space. This can be a significant factor for the
analysis of a real nonlinear problem.

4.11 INPUT AND OUTPUT

[nput and output are often the basis for user attitudes towards a structural
analysis program. Factors which influence these attitudes are many but the
major ones are

Togical input flow

input format (free form or otherwise)
ability to provide comments

ease of generating repetitive data
understandability of input instructions
control over output

o o © 0o o o o

format and labeling of output

A user's reaction to the input required for a new program is often influenced
by experience with other programs which, of course, may place the new program
in a good or bad light depending on the previous experience. Nevertheless,
the concept has arisen of "user friendliness" as a measure of the attitude
which a program may develop in the user. The meaning of this is obviously
subjective, but in such a context STAGSC-1 would probably rate as average.
tEase of input depends strongly on the logical flow of the input stream and the
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understandability of the input instructions. STAGSC-1 input is quite logical
and if the input manual is followed carefully a new user may expect to obtain
a set of input which will execute successfully after, perhaps, a couple of
tries. However, it is apparent that both the input logic and the input
instructions are strongly linked to the programming and are not based on some
concept of what might constitute “good" input. This is not necessarily a
criticism of the input but more a description of the type of input. Excellent
features are the free-form input and the ability to include user commenting.
STAGSC-1 input would lend itself eadily to the interactive mode since the
instructions used in the manual are already in the required form.

If the user selects any of the twelve standard shell units, the input required
for the generation of bulk data is minimal. Also, the constraints that
provide compatibility between shell units are easily imposed. For other
geometries, the user written subroutine LAME may be used to define the
reference surface. For element units, the choice is either individual input
of each node and element or automatic generation using user subroutines USRPT
and USRELT. Individual node and element input is unacceptable for more than a
few elements so the use of subroutines is almost always required. An
improvement would be the inclusion of simple linear mesh generators and
element pattern generators to provide a rapid means of generating meshes for a
large class of problems.

For load input, the ability to input both concentrated and distributed loads
either individually at mesh points or along specified rows and columns is a
good basic feature. This, together with the user subroutines USRLD and UPRESS
for generating loads provide a generally satisfactory capability. For element
units, not all load input options are yet operational, e.g., distributed

forces and moments.

Qutput control may be exercised separately on displacements, strains,
stresses, stress resultants, stresses and strains at yielded points ard
forces. The data for each shell unit is output as a block. However, the
frequency may be specified differently for each output quantity
(displacements, stresses, etc.) and also for each shell unit. Based on some
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1imited experience, it seems that if different frequencies are specified for
say stresses and displacements, both will be printed out at the higher
frequency which is contrary to the manual.

In addition, selected stresses and displacements may be output at each load or
time step. Thus, if it is desired to output data for a certain portion of the

structure at certain load step intervals, the only means of doing this is to
specify a special shell unit just for this region of the structure (since all
displacements, etc., are output for a shell unit). This may be inconvenient
and therefore some additional selectivity is needed to cater for such a
situation.

4.12 POST-PROCESSING AND PLOTTING

Currently, post-processing with STAGSC-1 is only partially operational. Its
developmental status is not yet comparable with that of the analysis program
which is quite a serious disadvantage when performing nonlinear analysis.
Moreover, in the case of a nonlinear analysis, the user often needs the
ability to access the solution data file and perform his own post-processing
directly. A typical requirement would be to extract inelastic strain
histories from the solution and post-process them according to design code
criteria, e.qg., the ASME Boiler and Pressure Vessel Code, Code Case N-47. The
necessary descriptions of the structure of the solution files are not

available in the documentation however, so this option is unavailable to the

user,

The STAGSC-1 post-processing program (STAPL) is executable in tandem with the
analysis or separately by saving the post-processing file (TAPE22). STAPL has
been developed from routines published by NASA [18] which provide deformed and

!
|

undeformed geometry plots and also contour plots. The separate routines were
merged by Anamet Laboratories [19] and further developed by Lockheed. The
current range of capabilites listed in the user's manual [2] are as follows:

A. geometry plots--deformed, undeformed and exploded (useful for mesh

checking)
58
09188-84B:2
(53034) 23




B. contour plots--displacements, velocities, force residuals*,
eigenvectors, force resultants, strains, stresses, temperatures*,

masses*, initial conditions and loads.

The items marked with an asterisk are not yet operational according to the
manual. Other features advertised which are also not operational are geometry
plots showing only shell unit boundaries, solution gquantities as vectors
emanating from the nodes; and automatic plot scaling. Fvaluation of STAGSC-
plotting is not included in the scope of this report.

Other development work has included the interfacing of the GIFTS* interactive
graphics package for mesh generation with STAGSC-1. This combination is

currently being evaluated by ONR.
4,13 SPECIAL STAGS FEATURES

This section is intended to highlight those features of the STAGSC-1 program
which serve to differentiate it from other finite element nonlinear structural
analysis programs. To begin with, STAGSC-1 is the outcome of approximately
thirteen years of development effort in an aerospace environment. It is this
environment which has stimulated the development of a number of analysis
programs for shells of revolution, e.g., BOSOR, DYNAPLAS, SATANS, etc. [20].
STAGSC-1 is an outgrowth of this effort which extends the capabilities to
general, three-dimensional thin shells, Other finite element analysis
programs (e.g., MARC) have incorporated shell elements in their element
libraries but supposedly cannot match the greater efficiency of the special
purpose shell programs.

Therefore, the basic advantage of STAGSC-1 is its emphasis on shell analysis.
The inclusion of beam and spar type elements does not make it a natural choice
for solely beam or truss types of structure, although it certainly is able to

*GIFTS is a finite element mesh generation and analysis program originally
developed for the analysis of ship structures and supported by ONR,
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perform such analyses. In this context one may pick out a number of features

of the program which are probably unique to STAGSC-1. These will be discussed

briefly in the remainder of this section.

A.

Shell Unit Concept

This has already been introduced and described in Section 4.2. The
distinguishing feature is the underlying grid on which the element
mesh can be overlaid. This makes it possible to define a library of
standard geometries with a minimum of input. Thus the mesh
variability which may be required for a specific problem can be
divorced from the generation of the surface geometry.

Initial Imperfections

The ability to specify an imperfect geometry as small perturbations
to a basic reference geometry is a feature of great value in a
program oriented towards shell buckling and collapse. To achieve
this in a general purpose program, if possible at all, would probably
require the writing of a special mesh generator for each problem. In
STAGSC-1, even if the reference surface is not part of the library,
the writing of the LAME subroutine for the reference surface and WIMP
for the initial imperfections is likely to be the most convenient way
of generating the data.

Layered and Composite Shell Wall Construction

Relatively complicated shell wall designs can be handled by
STAGSC-1. The types which may be included are as follows:

(1) multiple anisotropic layers

(2) multiple fiberwound layers

(3) walls reinforced by corrugated skin

(4) wall properties defined by a shell wall stiffness matrix
(5) any of the above with "smeared” stiffeners
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Multiple anisotropic layers are specified by layer thickness,
orthotropic elastic material properties and a principal direction for
these properties. This can also be used for fiberwound materials
where the layer properties are available. Corrugated skin
reinforcement is modeled by trapezoidal shaped corrugations whose

-~ == ON 09

cross-section dimensions are input. The shell wall stiffness matrix

method is available for layered composite walls whose overall §
stiffness properties are known. l 9
0. White-Besseling Plasticity Model
! This is not a commonly implemented constitutive model of plasticity
although the Mroz model, to which it is related, is available in the
} PLANS program [20]. The user should be aware that although there is
some evidence [21] to suggest that methods based on the mechanical
sublayer concept model reversed loading behavior well for some
materials, there is not as yet a substantial body of testing or
analytical experience to validate its use fully. The potential user
should therefore be prepared to perform his own validation for his
application.
E. Library of Load-Time Histories
STAGSC-1 contains three specific load-~time histories for transient 3
integration. These are E
(1) trapezoidal variation
(2) trignometric variation--sinusoidal, cosine square impulse or
cosine square ramp functions
(3) 1linear ramp and exponential decay |
’
These basic ingredients can model a significant variety of
transients. However, more general forcing functions may require the
user-supplied subroutine FORCET.
61
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ISHELL Description
2 Rectangular Plate
3 Quadrilateral
Plate
4 Annular Plate
5 Cylinder
6 Cone
7 Sphere
8 Torus
9 ENliptic cone or
or Cylinder
10 Paraboloid
1N Ellipsoid
12 Hyperboloid
09188-848:2
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TABLE 4.1

SHELL SURFACE GEOMETRIES

No. of
Coordinates

62

Comments

4 edge coordinates

8 corner coordinates

2 radii, 2 subtended angles

2 axial, 2 subtended angles, 1
radius

2 axial, 2 subtended angles, 2
radii

2 meridional and 2 azimuthal
angles, 1 radius

2 meridional and 2 axial angles,
bend radius, cross-section radius

2 axial, 2 angles, 2 major and
1 minor radii (similar cross-
sections)

2 axial, 2 angles, distances from
apex to focus and to smaller end

2 meridional and 2 azimuthal
angles, major and minor radii

2 axial, 2 angles, 3 coordinates
to define asymptote
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5.0 VERIFICATION EXERCISES

The verification procedure followed for the purposes of this evaluation was
simply to execute three different problems which were part of the STAGSC-1
program file supplied by Lockheed. The purpose of the verification was solely
to ensure that the version, as modified for the CDC 7600, was, in fact,
functioning correctly on the Westinghouse system. This does not constitute
verification in the normal sense*, but was considered to be sufficient in view
of the fact that the problems to be run in the course of the evaluation would
themselves provide substantial verification. The verification problems and
their solutions will be described in this section.

5.1 SHALLOW ARCH PROBLEM

The first verification exercise was a static, nonlinear analysis of a shallow
arch with a uniform, radially inward pressure loading. Figure 5.1 shows the
model data. The boundary conditions are simple supports at each end of the
arch. The solution converged using three load increments with 6 to 8
iterations required for each increment. One refactoring occurred during the
final increment. Figure 5.2 shows the center displacement plotted against
pressure. The solution obtained agreed identically with the output generated
by Lockheed. No analytically based solution for this problem was available
for purposes of comparison.

5.2 BUCKLING OF AN ANISOTROPIC FLAT PLATE

The program options involved in this problem include an eigenvalue analysis
for buckling, with material axes rotated with respect to the global axes by
45°. The bifurcation buckling load is 124.6 1b/in. Figure 5.3 shows the
plate geometry, the appliied lnading and the buckling mode. No
analytically-based solution was available, but the results agreed with the
Lockheed output.

*Verification is nominally the responsibility of the developer, and is intended

to ensure that the capabilities provided by the developer are, in an isolated
sense, functioning.
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5.3 CIRCULAR RING WITH INITIAL VELOCITY

Figure 5.4 shows the geometry for a circular ring segment with a uniform,

radially-inward initial velocity. Radially symmetric boundary conditions give

rise to a solution which predicts purely radial motion uniform along the
segment. Figure 5.5 shows the time history of the radial deflection
response. The measured period yields a frequency of 952.4 Hz which compares
with the exact value of 1000 Hz [36] (-4.8% error). The results agreed
identically with the Lockheed output.

These three checks, when first attempted, failed to execute and identified a
coding error which was corrected after consultation with Lockheed. The
subsequent successful executions confirmed that the program was performing

correctly on the Westinghouse system.
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6.0 ADVANCED EVALUATION EXERCISES

The most effective and convincing form of evaluation of a structural analysis
computer program is the obtaining of results from the execution of special
problems designed to test in-depth the various options of the program both
individually and in combination. This basic idea was developed in
considerahle detail by Nickell [1]. It was made clear in that discussion that
these are not conventional verification exercises but problems chosen and
executed in order to study specific aspects of the behavior of the elements 1in
the program library together with the solution algorithms. The rigorous
evaluation of a sophisticated program such as STAGSC-1 based on these
quidelines is a very large task. The scope of the present work is therefore
limited to provide an in-depth study of some, but not all, of the capabilities
of the program. The areas selected for the advanced evaluation are as follows;

Element convergence
Eigenvalue extraction
Transient integration

o O O o

Nonlinear solution algorithm

These will be described and the results presented in the four following
subsections.

6.1 ELEMENT CONVERGENCE

2 A ks o Povgs

A dual approach has been adopted in investigating the convergence of STAGSC-1
elements. First of all, a direct convergence study has been made by grid
refinement of two multi-element problems which have well documented ~

LT A

solutions. The problems selected are:

A. a cylindrical roof (or barrel vault) simply supported at each end and
subjected to gravity loading.

B. a square flat plate with clamped edges and uniform pressure (linear
and nonlinear).

79
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These have been extensively studied {14, 22, 23] using both analytical and
numerical methods of solution. Also the convergence properties of other
elements for the cylindrical roof are well known. The second approach is to
determine the eigenvector components of the element stiffness matrix and
resolve the energy content for simple loading cases into the various
eigenmodes. The spectrum of eigenmodes gives insight into the deformation

responses which can he obtained using a particular element and can also show
whether there are any spurious (zero energy) modes inherent in the element
formulation.

In this work, attention has been confined to the quadrilateral shell
elements. The reasons for this are:

A. STAGSC-1 is primarily a shell program;
B. The triangular shell elements are embodied in the quodrilaterals.

6.1.1 CYLINDRICAL ROOF PROBLEM

The geometry of the roof is shown in Figure 6.1. For gravity loading, there
are two vertical planes of symmetry and hence anly ane quarter of the
structure needs to be modeled. The majority of published solutions to this
problem assume a zero value for Poisson's ratio.

For the present investigation, the two classes of quadrilateral plate element
(410 and 420 series) were tested. Two of the 420 series (420 and 421) were
used but both failed to obtain a solution. In each case a message was printed
indicating ill-conditioning of the stiffness matrix and termination of the
solution because of this. Reasons for this failure are not understood and are
beina studied by Lockheed. The mesh configurations used for the 1/4 model

(see Figure 6.1) ranged from 2 x 2 (4 elements) to 10 x 10 (100 elements).
Two displacement measures of convergence were used and gave similar results.
These were the vertical deflections at the mid-point of the free edge (Point
B) and the mid-point of the whole roof (Point C). Figures 6.2 and 6.3 show / ¢
the deflections WB and wc plotted against total number of degrees of '
freedom. Figure 6.2 shows also the theoretical solution for deflection WB
hased on shallow shell and deep shell theories (see Reference 23). Probably
the best numerical solutions to this problem have been achieved using the

0920B-868: 2
(53034) 2 : 80




o o U0 0N O e @ —

ABAQUS [25] and the MARC [26] finite element programs and these are included
as benchmark comparisons. In addition, the shallow curved shell triangular
element of Cowper, Lindberg and Olson (24] is shown as representative of the
earlier approaches to shell element formulation based on a shallow shell
approximation (Novozhilov theory). The ABAQUS element is the thin shell
isoparametric element due to Ahmad, whilr the MARC element 24 is based on the
de Veubeke element and Koiter-Sanders shell theory and is also doubly-curved,
1soparametric. Both of these elements give very accurate results using only
four elements.

The STAGSC-1 elements, being flat, approximate the geometry relatively crudely
for the coarsest mesh (4 elements) and the results are correspondingly
inaccurate. The 410 element for the 4 element mesh overestimates the free
edge displacement wB and the center displacement wC by about 41% in each

case. The 411 element performs better for the coarse mesh but uses 99 degrees
of freedom instead of 63 (410). However, the convergence properties of the
411 element appear rather worse than the 410 despite the higher order shape
functions. Moreover, its initial high convergence rate gives an overshoot
with respect to the exact solution which is why, in the end, it does not give
any better results than the 410 element. The NASTRAN evaluation study [14]
gives a very comprehensive comparison between the NASTRAN element TRSHL and a
number of other elements including the Ahmad isoparametric. Comparing the
STAGSC-1 results with this data it is obvious that the STAGSC-1 elements
perform considerably better than TRSHL but not so well as MSC/NASTRAN's QUAD 4
element.

In summary, it can be stated that the 410 series performs acceptably for a
curved shell problem bearing in mind that the element formulation is for a
flat plate,

6.1.7 FLAT PLATE PROBLEM

The failure of the 420 series elements to provide a solution to the
cylindrical roof problem made it necessary to select a different test case. A
flat square plate, simply supported or clamped at the edges was used in the
NASTRAN evaluation study by Jones, et. al., [14] to obtain convergence data

09208-86B:7
{s3034) 3
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for the QDPLT (quadrilateral plate) element. A purely linear solution to this
problem will only provide data for the bending behavior of an element.

herefore, in order to test both bending and membrane convergence, the large
deflection problem must be solved. Linear solutions are available in Roark
[27] for the flat plate subject to a wide variety of loads and boundary
conditions. However, for the nonlinear case the only solutions provided are
for uniform prescure loading with various edge conditions. The case selected
therefore was the square plate, clamped along all four edges and subject to
uniform pressure loading. The linear solution to this problem in terms of the
deflection at the mid-point of the plate is

4
wA = 0.01376 Egj, where A denotes the plate center,
£t

Fiqure 6.4 shows the geometry of the plate. For this geometry and a pressure
of 12500 p.s.i., the maximum deflection is given by

Wy = 0.2752 inches

The nonlinear solution is presented as a function of the applied pressure and
is shown in Figure 6.5 in dimensionless form. For a pressure of 12500 p.s.i.

the maximum deflection is

NA = 0.1380 inches

which is only 50% of the linear deflection. The 410 and 411 elements yield
identical solutions for the linear case as do 420 and 422. The reason is, of
course, that the bending shape functions are the same for the different

S SRy S -

element types in the two series. Therefore, it was only necessary to compare
410 and 420 for the linear case. Figure 6.6 shows the convergence behavior in

terms of the maximum displacement for 410 and 420. It is noteworthy that the
presence of the mid-side rotations gives rise to a poorer result for the

R = E sty i I A el *ap R e

coarsest mesh, Table 6.1 shows the percent error as a function of the number /
of elements.
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Thus, for bending deformations, the 420 series are clearly superior to the 410
series so far as accuracy and rate of convergence is concerned. However,
these results are of limited significance in the wider context of nonlinear
shell analysis. The nonlinear case brings in the effect of membrane
deformation as well as bending and therefore gives a more complete picture of
the overall convergence of the elements. Figure 6.7 shows how the nonlinear
solutions, obtained using the 410 element (4 elements and 25 elements),
compare with the theoretical. Figure 6.8 shows the relative convergence
hehavior for 410, 411, 420 and 422. Table 6.2 shows the percent errors as a
function of mesh size. The 411 element appears to give the best accuracy for
the coarsest mesh in the nonlinear case. This appears somewhat anomalous in
comparison with the rest of the elements except for the fact that 411 is the
only one that has two independent normal rotations at each corner and thus has
an added degree of membrane shear flexibility. It is clear that in this
problem it is the refinement of the membrane shape function which is
responsible for improvements in accuracy for a given mesh size.

However, in comparing the convergence rates of different elements, we must
beware of drawing premature conclusions particularly for nonlinear analysis.
The ultimate goal of the structural analyst is to produce the best accuracy
commensurate with the cost of performing the analysis. The cost for the
nonlinear analysis is not only a function of the element complexity but also
of the way in which the element affects the performance of the solution
algorithm. This is particularly relevant for STAGSC-1 because of the
automatic adjustment of load step size and refactoring operations. Table 6.3
provides details of the 17 nonlinear analyses performed for element
convergence. It is clear from the table that much depends on whether or not
the step size is halved during the analysis. For example, Run No. 12 using 25
410 elements took less CPU time than Run 9 using only 9 elements. The reason
was that with the more refined mesh, solution convergence criteria were
satisfied without cutting back the load step. A similar situation occurred
for Runs 19 and 20 (element 420) except that Run 19 did not need to refactor
whereas Run 20 did.

. 83
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Thus, if the total CPU time for each run is plotted against solution accuracy

(Figure 6.9), a somewhat different view of convergence (in the broader sense)
is obtained. Element 411 appears to he again the best performer, except that
for higher accuracy (<3% error) a finer mesh using element 410 provides an
equally cost-effective solution. Flement 420 in this context appears to be
the least cost-effective element.

6.1.3 ELEMENT EIGENVALUE ANALYSIS

The specification of assumed displacement fields in terms of polynomial shape
functions is the almost universal method for obtaining the stiffness
characteristics of finite elements. A subtle disadvantage of this approach is
that the fundamental deformational capability of the element becomes almost
totally obscured by the algebraic complexity of the functions. The so-called
"natural-mode" method of formulating finite elements was developed by Argyris
(28] and his co-workers prior to 1965 but did not achieve widespread use as
the problem of defining such modes for more complex elements far out-weighed
the advantages. However, these prescribed natural modes of deformation are
designed to be orthogunal and are therefore eigenvectors of the resultant
stiffness matrix. Therefore, if an eigenmode analysis of any stiffness matrix
(however it may be generated) is performed, the so-called natural modes are
obtained which are often physically much more revealing than the original
shape functions. Moreover, as discussed by Gallagher [29], the complete set
of stiffness matrix eigenvectors must include the set of rigid body modes
which are identified by zero eigenvalues. Since there can be, at most, six
rigid body modes any number of zero eigenvalues greater than six indicates the
presence of undesired kinematic degrees of freedom. This approach is
therefore also a test for anomalous behavior; this could be inherent in the
form of the shape functions which have been assumed, or could be a result of
the numerical procedures used for integrating the terms in the stiffness

matrix.,

Two possible methods of performing the eigenvalue analysis can be envisaged.
A direct dynamic eigensolution could, in principle, be obtained for a sinqgle
element by invoking the appropriate aption in STAGSC-1. There are two
nbjections to this apprnach, one theoretical and the other practical. The

practical difficulty is decisive <iace STAGSC-1 is not ahle to perform any
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analysis on a system which is totally unsupported. Thus, "free-free" modes of
vibration cannot be determined because the solution procedure fails in matrix

decomposition. Therefore, the complete set of modes, which must include rigid
body modes, cannot he determined in this way. The second objection is, of

' course, that the vibration mode analysis will obtain the eigensolution for the
dynamical matrix and not the stiffness matrix per se.

The second approach (the method adopted for this work) is to obtain the actual
stiffness generated by the program for a single element and perform a separate
i eigenmode analysis on this matrix. STAGSC-1 saves the element stiffness
‘ matrix on TAPE23 for a restart or on TAPE8 for an eigenvalue analysis based on
a nonlinear stress state (either buckling or vibrations). Since the data on :
TAPER is written as a straightforward unformatted write operation, the latter

method was chosen. The eigensolution for the stiffness matrix was then
obtained by using a specially written program ELMOD (Appendix). This program
reads in the stiffness matrix (written as a lower triangle) and also a
solution vector. After the eigenvalues and eigenvectors have been determined,

TR ey Sy

the program computes the strain energy associated with each mode corresponding
to the given solution vector. The Appendix provides a description of ELMOD

and a listing. §~

The usefulness of this method depends entirely on the ability to associate the ;

individual terms of the eigenvectors with the corresponding degrees of freedom }
for the element. This proved to be possible only for the 410 element. A1l i
other elements were formed with some degrees of freedom condensed out and the o
identification of the remaining freedoms could not be performed.

Ten separate load cases were devised for the single element model. Figure .
6.10 shows the model geometry and the support conditions (which are sufficient
only to eliminate rigid body freedoms). The load cases were chosen so as to

excite as many different modes of deformation as possible and also to use as L

many load options as possible. Figure 6.11 shows the nodal equilibrium forces ‘

printed out by STAGSC-1 for each of the cases. Thus, Cases 1 and 2 are 13

identical in distribution {not in magnitude) and have displacement solutions :
| which differ only by a common factor. Cases 3 and 4 are similar but Case 4
| (distributed edge load) produces self equilibrating moments about the normal

0920B-86B:2
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at the two nodes on the loaded edge. Cases 6 and 7 which are comparable cases
(but with the loading in the Y-direction) do not produce moments about the
normal. However, as is clear from Figure 6.11, the actual pattern of loads
and reactions is different because of the support conditions. Cases 6 and 7
yield identical displacement solutions. Case 5 (uniform tangential shear
Toading) is very similar to 6 and 7 with respect to nodal force

distributions. The displacements in the X-direction are identical with 6 & 7
with only minor (but real) differences in the Y-direction, Cases 8 and 9
(concentrated corner moment) also produce identical displacement patterns.
Case 10, with a single concentrated moment about the normal at the free corner
produced zero displacements and nodal equilibrium forces; the obvious
conclusion for Case 10 is that STAGSC-1 calculates no contributions to the
force vector from moment components about the normal.

In order to obtain the modal distribution of strain energy, the stiffness
eigenmodes were determined. Figures 6.12-a through 6.12-c provide qualitative
sketches of the mode shapes calculated. A total of 24 modes were obtained
corresponding to the 24 degrees of freedom of the stiffness matrix. The
eigenvalues and mode descriptions are contained in Table 6.4. The most
striking observation from Table 6.4 is that there are seven zero eigenvalue
modes. Since there can be only six genuine rigid body modes, the existence of
an extra mode indicates the presence of some spurious kinematic freedom. This
is presumably associated with the inclusion of the rotations about the surface
normal at the corners as separate degrees of freedom. Inspection of the
eigenvectors shows that for the zero eigenvalue modes, the displacements and
rotations are all mutually consistent (and also with all six rigid body
freedoms), with the exception of the rotations about the normal. These are an
independent set and hence explain the presence of the seventh zero mode. This
observation presents difficulties in explaining the declared purpose of the
normal rotation [2], which is to provide for cubic variation of in-plane
displacements along an edge, i.e., if the rotations are uncoupled in the rigid
body modes, how are they coupled to the deformation behavior?

Setting aside this dilemma for the time being, attention will be directed to
the deformation modes. The lowest eigenvalue (least stiff) deformation mode
(Mode 8) is, somewhat surprisingly, purely membrane. The eigenvector shows
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that the dominant freedoms are the corner normal rotations. There is a
companion mode (21) in which the translations are the dominant freedoms and
for which there is therefore much greater overall stretching. Mode 9 is the
essential linear twisting mode. Modes 10 through 13 represent various types
of pure bending behavior with Mode 10 being the anticlastic bending mode and
Mode 13 spherical bending. Modes 14 and 15 are a combination of bending and
twisting. Modes 16 through 22 are various membrane modes which include pure
in-plane shear (18) and pure membrane dilation (22). The two remaining modes
are doubly antisymmetric diagonal bending and twisting modes. In Mode 23 the
diagonals remain straight, while Mode 24 has anticlastic bending along the
diagonals.

Table 6.5 shows the results of the modal energy computations. As discussed
previously, there are, in reality, only six load cases which provide
distinctly different displacement solution vectors; these are Cases 1, 3, 4, 6
and 8.

Case 1, as might be expected, deforms the element almost entirely into a
linear twist mode (9); the only ather mode involved is 24 but its energy
content is so low that it could be attributed to numerical round-off. Load
Cases 3, 4, 5 and 6, being all in-plane loadings, excite only membrane modes.
The most striking observation is that most of the energy is stored by Modes 8

or 16 with the other modes participating to provide the asymmetric response.
Case 4 is outstanding because, although the loading is in the same direction
as Case 3, Mode 8 does not participate at all. This may be related to the
fact that Case 4 is the only one in which non-zero equilibrium moments are
printed out for the normal rotation directions. The response for load Case 8
is mainly provided by Modes 9, 10 and 11.

None of the load cases produced any significant response in the diagonal
bending plus twist modes (23 & 24) although it is obvious that a superposition
of load Cases 8 and 9 ought to produce a response in which Mode 23
participates more strongly. Accordingly, the solution vectors for Cases 8 and
9 were superposed and the energy distribution calulated. As expected, Mode 23
now provides the dominant response.
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It is clear that the only questionable result of the eigenvalue analysis is
the existence of the seventh zero eigenvalue mode for element 410. Eigenvalue
analyses were performed also for elements 411, 420 and 427 despite the fact
that no modal decomposition of the strain energy could be performed. None of
these elements had more than six zero eigenvalue modes. The developers
recommend that when element 410 is used at least one normal rotation degree of
freedom should be constrained.

6.2 EIGENSOLUTION PERFORMANCE

Three particular aspects of performance were chosen for investigation. These
were:

A. ability of the algorithm to discriminate between closely-spaced or
multiple eigenvalues, and the orthonormality of the corresponding
eigenmodes;

B. degradation of accuracy with increasing mode number; and
C. convergence of the solution

Three models, of increasing complexity, were developed to examine these
questions. The first was a simple cantilever beam in three dimensions. For
equal, or slightly different, principle moments of inertia of the
cross-section, multiple or closely-spaced eigenvalues can be easily obtained.
The second problem was a cantilever flat plate which is also well documented
and therefore provides a further check on accuracy and convergence. Thirdly,
a short cylinder with simply supported ends was chosen as an example of a

shell structure with closely spaced modes at the lower frequencies.

6.2.1 3-D CANTILEVER BEAM

Figure 6.13 shows the geometry and finite element idealization of the beam.
Ten beam elements (Element 210) were used along the length. Element 210 has
cubic interpolation for transverse displacement and linear interpolation for
axial displacements and twist, The exact solution for flexural frequencies
was obtained from Reference 30 and is as follows:
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£ = ("t (£1/0aL471/2 6.1

where
nL is obtained as the solution of

cosh (nL) cos (nL) +1 =0 6.2

and
density in mass units

>» ©
H

area of cross-section

The STAGSC-1 analysis consisted of five separate runs. In all cases only
lateral motion was permitted. The first two analyses confined vibrations to
the XZ plane. The next three permitted motion in both planes but varied the
ratio of the principal moments of inertia in order to observe the performance
of the algorithim in the presence of closely spaced or multiple frequencies.
The only difference between the first two analyses was that five modes were
determined in the first case and ten modes in the second. Table 6.6 contains
the frequency results for vibrations in the XZ plane.

Comparison of the STAGSC-1 frequencies with the exact results shows that the
accuracy begins to degrade significantly after 3 or 4 modes. However, this is
probably more a consequence of the mesh than anything else, since there are
only 20 active deqrees of freedom. The results also indicated that specifying
5 or 10 modes for determination did not affect the accuracy with which they
were obtained nor did it affect the number of iterations for convergence (6 in
each case).

For the cases of closely spaced and multiple modes, results are presented for
the runs made with 1% difference in cross-section dimensions and equal
dimensions. Frequencies are tabulated in Table 6.7 for the first six modes in
each case.

The determination of the modes and frequencies was performed with accuracy
equal to the case where they were not closely spaced. The only noticeable
difference is in the solutions for the eigenvectors, where the modes become a
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mixture of components in the XZ and XY planes. However, in the case where
there is only 1% difference in the frequency pairs, the dominance of one mode
over the companion is extremely strong (1/107). For equal frequencies, this
dominance is much less but in this situation no dominance is really to be
expected. Convergence of the iterative procedure was the same in all cases.

The comparison with the exact results indicated that STAGSC-1 underestimated
all frequencies. The exact solution is based on classical beam theory with no
allowance for shear deformation or rotary inertia. These effects are not
included in the beam elements so it must be concluded that the lowering of the
frequency is associated with the element mass matrix (which is lumped).*

6.2.2 FLAT PLATE CANTILEVER

This problem is well documented, since theoretical and finite element
solutions to this problem are available in References 31 (page 550) and 26
(Volume E, page E4, 1-4) and it is therefore well documented. The problem
description is contained in Figure 6.14, Table 6.8 shows a comparison between
the STAGSC-1 model, using element 410, the MARC solution [26] using MARC
element 4, the Zienkiewicz solution {31] using a non-conforming triangular
element and the classical solution. In each case the mesh consists of two
square regions which gives two elements for STAGSC-1 and MARC and four
triangles for the Zienkiewicz solutions.

For two elements, the STAGSC-1 results are very poor. This is not,
apparently, a failure of the eigensolver since much better solutions were
obtained using more elements.

Figure 6.15 shows the convergence of the first mode frequency for STAGSC-1 as
a function of the number of elements. For the purposes of comparison the
Zinkiewicz (triangle) solution is plotted as a 2-element mesh because the same
basic rectangular grid is used.

*Convergence should be from above. The fact that the frequencies are under-
estimated indicates a failure to satisfy some equations of mechanics. It
may also be the result of numerical integration procedures for stiffness
formation.
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The eigenvalue solution (4 frequencies requested) required 4 iterations for
the 2 element model, 6 iterations for 8 elements and 7 iterations for 32
elements. Thus, the number of iterations required was not strongly dependent
on the size of the model.

6.2.3 SIMPLY SUPPORTED CYLINDER

An analytical solution for the free vibrations of a thin-walled cylinder was
first documented by Baron & Bleich [34] and their solutions were utilized by
other workers [32, 33] for comparison with a finite element solution and also
in supersonic flutter calculations. A characteristic of the modal behavior of
a thin cylinder is that the lowest frequency is obtained for an axial
wavelength of 2 diameters (m = 1) and a circumferential wavelength of #/8
diameters (i.e., 8 circumferential waves; n = 8). For numbers of
circumferential waves both greater or less than 8, the frequencies are

higher. Figure 6.16 shows the geometry selected for the STAGSC-1 analysis,
which is the same as that used by Greene, et. al., [32] and Voss [33]. Since
the length was chosen to be one diameter and simply supported boundary
conditions were imposed at each end, solutions can be obtained for axial
wavelengths which are equal to 2D/m, where m is the number of axial half waves
between the ends and D is the diameter. Figure 6.17 shows how the frequencies
are distributed with respect to the number of full circumferential waves n.
The lowest frequency corresponds to a single axial half wave (m = 1), and
eight full circumferential waves (n = 8). Attention was confined to modes
where m = 1 and therefore it was possible to impose symmetry boundary
conditions at the mid axial section. Some initial runs were made in order to
establish a reasonable mesh for the analysis. Greene, et. al., [32] analysed

l the problem using a mesh based on a quarter wave model, i.e., the model ]

spanned 11 1/4° circumferentially and half the length, which is 1/4 wave in
? both directions for the fundamental mode (m = 1, n = 8, Figure 6.13). For the

l present study, two 1/4 wave meshes were set up, one with a 4 x 4 mesh (16
elements) and one with a 5 x 5 mesh., The fundamental frequencies obtained are

' given in Table 6.9. These results indicate a well-converged solution, at
least for the first few modes. However, the 11 1/4° model is only suitable

‘ for the fundamental (or appropriate multiples) because of the boundary
conditions imposed on the axial edges. In order to establish a mesh suitable

f ) for higher modes, a 1/8 cylinder model was set up.
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Referring to Figure 6.16, the 1/8 model spanned the region ABCD; symmetric
boundary conditions were imposed on edges AB, BC and AD. Table 6.10 presents
results for four different meshes.

The results show that in order to capture the lowest modes accurately, at
Teast 16 circumferential elements were required (i.e., 2 per quarter wave) and
4 axial (4 per quarter wave).

The larger number per gquarter wave in the axial direction is probably due to
the poor aspect ratio obtained with the 16 x 2 mesh. This seems to be
substantiated by comparing the 16 x 4 and the 16 x 8 meshes. Figure 6.18
shows the corresponding mode shapes and emphasizes the fact that the best
accuracy is obtained for Mode 5 {n = 6) where the best definition of the mode
shape is obtained. Thus, in order to develop reasonable accuracy for a full
circumference model, it became clear that 64 circumferential elements would be
necessary and at least 2 axial elements for a half cylinder model (using

symmetry about the mid-length).

Using the 1/2 cylinder model, some apparently anomalous results were
obtained. The first two modes for the cylinder correspond ton = 8 and n = 7
circumferential waves respectively. STAGSC-1 was executed with the following
parameters specified

NEIG = 4, SHIFT = EIGA = EIGB = 0

which instructs the program to determine the four lowest eigenvalues using a
zero frequency shift. The frequencies obtained are shown in Table 6.11.

The modes that were isoclated by the program consisted of two pairs each with 8
and 7 circumferential waves respectively, but with slightly different
frequencies. Such pairs do not exist according to the classical analysis.
Figure 6.19 through 6.22 show the mode shapes in terms of the normal
displacements plotted around the circumference. It seems clear that modes 1
and 3 (as numbered by STAGSC-1) correspond to the true modes with 8 and 7
circumferential waves whereas modes 2 and 4 are anomalous due to their
irregularity in circumferential distribution. The eigensolver ohtained
converged eigenvalues after a total of 16 iterations, having automatically
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selected a frequency shift of 78.53 Hz after 8 iterations. Thus, the
algorithm was quite capable of discrimination between the closely-spaced
frequencies in each pair. It seems likely, therefore, that the anomalous
modes are a result of the finite element discretization. Since the element
type and mesh size are the same as for the 1/8 cylinder model (which did not
give rise to these paired modes) the most likely source of the anomaly is the
juncture of the cylindrical shell unit. This, in effect, introduces an axial
“seam® in the structure which probably results in some slight asymmetry.

If this is indeed the situation, then it could be argued that the eigensolver
is highly sensitive and discriminatory in identifying modes which are so
closely similar. On the other hand, the more practical conclusion is that
such powers of discrimination may be a considerable nuisance where, in an
unknown situation, the separation of real and spurious modes may not be so

easy.

In order to obtain further modes, use was made of the feature whereby the
frequencies in the vicinity of a given range can be determined (EIGA, EIGB).
The complete set of results is presented in Table 6.12.

6.2.4 CONCLUSIONS

The evaluation exercises performed permit some overall conclusions to be drawn
with respect to the performance of the eigensolver. Three aspects were
investigated and these can be summarized as follows:

A. Discrimination between closely spaced or multiple modes is very good
for problems of widely varying complexity.

B. Degradation of accuracy with increasing mode number was observed, but
the underlying cause was probably associated more with the adequacy

of the mesh and the elements themselves, rather than the eigensolver.

C. Solution convergence behavior for the problems investigated was

satisfactory.
93
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Overall conclusions based on this study are therefore that the eigensolver in
STAGSC-1 is highly discriminatory, accurate and efficient. In fact, the
quality of the solutions obtained was probably mostly dependent on the
elements themselves rather than the eigensolver.

6.3 TRANSTENT INTEGRATION PERFORMANCE

STAGSC-1 is particularly well equipped with transient integration capability
having one explicit and four implicit operators. The operators themselves are
described in Section 4.8, and it is the purpose of this section to investigate
their relative performance. Much has been written about the accuracy,
stability, damping and so on of the multitude of numerica) operators which
have been developed for the integration of ordinary differential equations.
Most of the research, however, has dealt with their application to linear
problems, presumably because the mathematical proofs involved can be more
readily derived. From the practical point of view, use of these algorithms in
a program such as STAGSC-1, more often than not, will be for the integration
of a non-linear set of equations. The main thrust of the present study was
therefore directed towards studying the performance of the operators when
applied to a non-linear problem. The properties which are relevant are the
same as for a linear problem, i.e., accuracy, stability, artificial damping
and frequency distortion (dispersion).

Two problems were selected for the investigation. The first was a benchmark
to establish the general validity of the transient integration in STAGSC-1,
and was chosen to be the linear elastic response of a thin-cantilever flat
plate subjected to a trianqular pressure pulse. This example is a
demonstration problem used for the MARC program [26] and a comparison solution
was therefore available. The second problem was the non-linear response of a
circular ring segment subjected to an impulsive pressure loading. The
solution to this problem has been reported by Stricklin, et. al., [37] with
comparisons between analysis and experiment. All of the candidate integration
operators were tested using this problem.
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6.3.1 FLAT PLATE MODEL

The basic model and dimensions were the same as were used in the work on the
eigensolver performance and details may be found in Figure 6.14. The pressure
time history is shown in Figure 6.23 and is a triangular shaped pulse with a
peak value of 100 1b/1‘n2 applied uniformly over the whole plate. The total

l duration of the pulse was 0.04 milliseconds.

— o= oa =S

This problem was analyzed using the explicit and the implicit trapezoidal
methods (Newmark - g) in STAGSC-1. The model used element 410 in a mesh
with four elements lengthwise and two across the width. The bench mark
comparison was obtained using the MARC program. The MARC model was based on
element 4 and a mesh consisting of two elements lengthwise.

The explicit method requires the selection of a time step which is below the
stability limit. This may be estimated in several different ways which may be
summarized as follows:

where ®nax is the highest circular frequency which is inherent in the

finite element model.

-1/2
2 -1
(b) at < Min ([(9—)2 + (-Ci) ] 23 [(—]—§ + (]—§ ] 6.3
- Ao AB *he Aa AB } ) !
where ‘
i
c? = E/0 (1-0); '
2 ;
CS = G/p '
a8 (< aa) are grid spacings
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h = interval in finite difference formulation; in thiy case the
assumption is made that aa = 2h

{see [3], page 6-33)

ot < — 6.4

( C? = t/p (l-v?) = speed of sound
! Using the material properties for the flat plate model and the spacing

sa = ag = 0.5 inch (4 x 2 mesh) the following values of at were obtained
and are tabulated below;

The table shows that a st of less than 2 x 1070 seconds is required for a :
stable solution. Accordingly a time step of 1 x 10-6 seconds was chosen but
the solution diverged after 6 time steps. A tenfold reduction in time step

size to 0.1 x 10-6 seconds permitted the solution to progress further but )
divergence still occurred after 13 time steps. The most probable source of '
this discrepancy in the assumption used in the critical time step formula |
6.3. For high-order finite elements, the values of h {finite difference

interval) or aa are difficult to estimate, and these estimates can be }

seriously affected by inconsistent mass-lumping combined with high-order
deformation patterns. As pointed out by Krieg and Key [35], explicit
operators do not work effectively with high-order elements for this reason.
However, the fact remained that the time step size clearly had to be much f
smaller, probably by at least an order of magnitude, in order that a stable

solution be obtained. The effort was therefore discontinued at this point and N
attention directed towards the implicit trapezoidal operator.

The MARC solution referred to earlier had used a time step of 20 x 10'6

seconds. Accordingly, for the STAGSC-1 solution values of 10 x 10'6
seconds, 20 x 10°® seconds and 100 x 1078 seconds were used and the
solutions compared with the MARC response. Solutions were obtained out to a

{ total time of 1000 «x 10'6 seconds. Figures 6.24 and 6.25 show the tip i
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displacement and tip velocity as a function of time for the STAGSC-1 and MARC
solutions. First, there was no significant difference in the STAGSC-1 tip
displacement time histories for at = 10 x 10‘6 seconds and at = 20 x

1076 seconds so results are presented only for at = 10 x 10'6 seconds.

Figure 6.24 shows that there is excellent agreement between the MARC and
STAGSC-1 solutions. At first sight there appear to be some dispersive affects
in the STAGSC-1 solution as compared with MARC since the fundamental response
’ frequency is about 14% less than the MARC result. However, it is more likely

.

that the “dispersion“ is merely underprediction of the frequencies by the

( ' STAGSC-1 model (Element 410) as previously demonstrated. The peak-to-peak

i amplitude of the STAGSC-1 solution is about the same as that predicted by
MARC. The solution obtained using a time step of 100 x 1078 seconds is
clearly rather coarse and does not give any resolution of the higher frequency
components as might be expected. However, the solution appeared to be on the
point of diverging at the final time step. Figure 6.25 shows how the
responses in terms of tip velocity compare. The previously observed frequency
distortion is rather more pronounced, particularly with regard to the higher
frequency components. Thus, it may be inferred from this benchmark case that
correct and reasonably accurate results can be obtained using the STAGSC-1
trapezoidal operator for a linear response analysis. The failure to do so
with the explicit method could probably be resolved by using a smaller time
step, but this was not demonstrated.

6.3.2 IMPULSIVELY LOADED RING

Stricklin, et. al., [37] performed a large deflection elastic-plastic E
transient dynamic analysis of an impulsively loaded ring using the program o
DYNAPLAS. The ring problem was initially posed and analyzed by Wu & Witmer A

{38] who compared their results with experimental data. The geometry of the

ring is shown in Figure 6.26. The initial conditions for the problem are zero
| displacements and a radially inward initial velocity of 4862 inch/second
imposed over a central sector of 120°. The STAGSC-1 finite element model
assumed symmetry about the plane through the middle of the ring (e = 0°) and
utilized 21 equal elements between & = 0° and e = 157.5°. The element b
used was element 410. ;

R A o
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The original intent was to perform full elastic-plastic large deflection
transient analyses for each operator and for various time steps. However,
difficulties were encountered with the plasticity solution and this
comprehensive approach was discarded in favor of an elastic large displacement
solution. This was considered to be sufficiently nonlinear to test the
integration operators effectively. Table 6.14 gives a summary of the
individual analyses performed.

Runs 10 through 11 were all full non-linear elastic-plastic analyses using the
Park integration operator.

A. Park Operator

A time step of 2 x 10'6 seconds was chosen for the first run on the
assumption that this would be sufficiently small to permit accurate
handling of the plasticity. The results indicated that the first 40
steps required plastic sub-iterations at each step but thereafter the
need became only occasional. Solution convergence was obtained with
only a single iteration per time step after the first 100 steps. The
solution reached a total time of 620 x 10'6 seconds when the
execution time 1imit was reached. Accordingly, the analysis was
repeated using the automatic time step control with an initial step
of 2 x 1078 seconds imposed for the first 100 steps. Subsequently,
the step was doubled twice during the next 16 steps. A third
doubling was attempted but the solution failed because the
determinant changed sign. It appears that in the automatic mode
STAGSC-1 at present is able only to increase the time step which is
obviously unsatisfactory for non-linear analysis in general where the
changing character of the nonlinearities as the solution progresses
may require successive increases or decreases in the step size.

For the third run (Run 12), a fixed step of 2 x 1078 seconds was
used and a restart file (TAPE22) was saved. The solution was
obtained up to a time of 1002 x 10" seconds.
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The fourth run was an attempted restart which failed giving the
message; "Restart tape does not contain plasticity data . . .,"
notwithstanding the fact that the previous run generating the file
confirmed that the plasticity data had been written to tape. At this
point, the solution was examined in detail and compared with the
published results. Fiqure 6.27 shows the time history of the
deflection at the center of the ring up to 0.001 seconds. The
solution compares reasonably well with the DYNAPLAS solution [37] but
shows a growing difference. The circumferential strain history
(Figure 6.28) at the center of the ring (outer surface) also shows
good agreement. Perhaps the most encouraging comparison is with the
experimental data presented by Wu and Witmer [38]. The deformed
shape at 0.0008 seconds as calculated by STAGSC-1 is compared with
the experimental results at 0.00079 seconds in Figure 6.29.
Nevertheless, it was concluded that for times greater than this the
solution was flawed. Figure 6.30 compares the distribution of
bending rotation at 0.001 seconds for STAGSC-1 and DYNAPLAS.

STAGSC-1 shows large discontinuities in rotation at three locations
(v = 52.5°, 75° and 150°) which clearly are unacceptable. This

appeared to be traceable to the plasticity solution since the
stresses did not lie on the stress-strain curve. Since the emphasis
was intended to be on the integration operators, it was decided at
this point to avoid the plasticity probiems and to perform the
evaluation using a purely elastic large displacement model. Thus,
runs 14 through 25 (Table 6.14) were confined to the elastic regime.
Using the same time step as for the plasticity solution, response was
obtained up to the maximum time specified of 0.002 seconds. The
solution was considered to be quite accurate since only one or two
iterations per time step were required. For the next run, the time
step was increased by a factor of ten (20 x 10'6 seconds). This

produced an interesting result; after the first step, the time
increment was automatically halved and the stiffness matrix
refactored, in contrast with run 11 where automatic time step control
was used and the time step was not reduced when difficulties were
encountered. Since a small time limit had been imposed, the run was
repeated with a time step of 10 x 10°® seconds. This solution
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refactored periodically and required from 2 to 8 iterations per time
step. Figure 6.31 shows the responses obtained for the two time
steps. Increasing the time step eliminated some of the high
frequencies and increased the dispersion (about 5%).

B. Trapezoidal Operator

Time steps of 2 x 10'6 seconds and 10 x 10-6 seconds were again
chosen. Figure 6.32 shows the responses obtained. There appears to
be very little to distinguish the two solutions; dispersion and
damping are both unaffected by increasing the time step. Comparison
with Figure 6.31 shows that the results are almost identical with
those obtained using the Park operator.

C. Gear 2nd and 3rd Order Operators

The Gear 2nd order operator shows about an 8.4% dispersive increase
in the fundamental period when the time step is increased (Figure
6.30). In addition, the damping of the higher frequencies is very
marked in comparison with the other operators. The Gear 3rd order
operator became unstable at about .00035 sec. using the smaller time
step. No further runs were attempted.

D. Explicit Operator

Time steps of 1 x 1078 seconds, 5 x 10”° seconds and 1 x 107/
seconds were attempted. The two larger steps both led to divergence
after a small number of steps (Figure 33). The run using a step of 1}
X 10—7 seconds did not diverge but completed only 1710 steps (t =
.00017 seconds) when the time limit for the run was reached. Since
this was clearly extremely inefficient compared with the other
operators, no further runs were attempted. The details of the
computer run times and resource usage are presented in Table 6.15.

{ Examination of the execution times presented in Table 6.12 shows that for the
implicit operators there are no obvious grounds for selecting one over another
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on the basis of computational efficiency. Comparison of the Park and
trapezoidal methods (Runs 14 and 18) shows that when the numbers of iterations
are the same and there is no refactoring then the execution times and computer
resource usage are also the same. Where differences do occur (e.g.,
trapezoidal and Gear's 2nd Order - Runs 17 and 19) they can be ascribed to
more refactoring in the case of the one method (trapezoidal) compared with the
other. Other things being equal, it may be said that this also reflects
properties of the integration operator, but such a conclusion would need to be
more firmly based than is possible with the present evidence. Such effects as
problem dependence would need to be investigated.

Perhaps the most surprising result is the very poor performance of the
explicit method which should be far superior on the basis of resources used
per time step. This is clearly not the case given the present problem and the
low value of the initial time step (0.1 «x 1076 seconds < at . < 0.5 x

10'6 seconds) makes it hopelessly uneconomical. For a large problem

however, where the cost of refactoring will be much greater, the explicit
method should become competitive.

6.3.3 CONCLUSIONS

Overall, the STAGSC-1 integration operators performed satisfactorily for both
linear and nonlinear transient response problems. For the relatively small
test problems the explicit method did not show to advantage because the size
of the critical time step was so small and the number of steps became
excessiva,

O0f the implicit methods, the trapezoidal operator was the most effective and
showed the smallest dispersion when the time step was increased. The Gear 2nd
and 3rd order operators were the least effective, the 3rd order method
becoming unstable even for the smaller time step.

h.4 NONLINEAR COLLAPSF ANALYSIS

This section presents results obtained from a number of elastic nonlinear
collapse analyses of point loaded cylindrical shells. The analyses were
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performed more or less on a production basis as part of an investigation of
the buckling of a nuclear reactor containment vessel due to localized loads,
and not as part of the STAGSC-)1 evaluation per se. However, because the
analyses are for the less frequently considered case of displacement-control,
and because of experience gained with certain input strategy parameters, it is
fruitful to discuss these aspects of the analyses as they pertain to the
STAGSC-1 evaluation. In this respect, it should be pointed out that the
analyses might very well have been performed differently, and certainly for
simpler and more economical problems, if the objective at the outset had been
an evaluation of the nonlinear collapse capability of STAGSC-1.

The problem of interest for the containment vessel buckling investigation is
collapse of the so-called "poked cylinder", which is a cylindrical shell
subjected to an inward-directed normal point force applied at midlength. Two

related and more standard problems were first run on STAGSC-1 to gain

i familiarity with the program, and to provide check cases. These problems are
| the point loaded venetian blind and the pinched cylinder. Dimensions and
material properties for the three elastic shell problems are given in Table
6.16 along with the STAGSC-1 predictions of the collapse loads. Table 6.16
also serves to define some of the notation.

6.4.1 ANALYSIS CONSIDERATIONS

Either displacement or load can be specified as the controlled variable in
STAGSC-1 input. For reasons of economy, and to obtain the post-collapse
behavior, displacement-controlled analyses were performed for each of the
three shell problems. Specifically, the radial displacement Y, under the
point load P is specified in steps, and the corresponding value of P required
to impose the specified displacement is determined from a printout of

"equilibrium forces." The nonlinear collapse load is the value of the lgad at
the maximum point (1imit point, dP/dw0=0) of the 10ad-disp1acement(P-wo)

curve obtained from the analysis. This load, which is also called the y
snap-through load or nonlinear buckling load in the literature, should not be g
confused with the bifurcation buckling load obtained from an eigenvalue type i

of analysis. For comparison, a load-controlled collapse analysis was also
| performed for one of the problems. In this case, the collapse load is taken
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to be the value of P for which the finite element computations failed to
converge within the specified convergence criterion (DELX), specified
permissible number of cuts in the load step (NCUT), and the number of times
the stiffness matrix can be refactored (NEWT). Because of symmetry
conditions, each shell problem is analyzed as a cylindrical panel whose axial
length is half the actual length of the shell, and whose circumferential angle
is half the actual opening angle of the venetian blind, and 90° and 180° for
the pinched and poked cylinders, respectively. Classical simple support
(diaphragm) boundary conditions are imposed on the curved edges of all three
panels, and free edge conditions are specified on the remaining straight side
of the venetian blind panel. The quadrilateral plate element 411 with 2x2
Gaussian integration points’ is used in the analyses. Table 6.17 gives the
number of mesh points along with computer costs and other details of the
analyses.

Analyses of the venetian blind and pinched cylinder were performed in a
straightforward manner, with no decisions required for selection of the
strategy parameters beyond initial specification of NCUT and NEWT.
Specifically, it was not necessary to tighten the convergence criterion DELX
from its default value of 10'3, or to force refactoring at each of the
higher load steps. In contrast, the poked cylinder analysis required that

greater attention be paid to these strategy parameters, with DELX being
“3 16 107 and 107>, and with refactoring forced at
consecutive higher load steps (see Table 6.17), as is discussed more
completely later.

reduced from 10

6.4.2 VENETIAN BLIND & PINCHED CYLINDER RESULTS
A. Comparison With Previous Solutions
Table 6.18 shows that linear STAGSC-1 results appropriate to the

meshes of Table 6.17 agree to within 10% with previous solutions :
[41,42] for ont/P, a dimensionless flexibility coefficient. Use /

*Use of 2x2 integration points was recommended by the developers of STAGSC-1.
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of a finer mesh is seen to reduce the discrepancy in the pinched
cylinder results from 10 to 2%. For reasons of economy, the finer
mesh was not used in the nonlinear collapse analysis of the pinched
cylinder.

With regard to the comparison of nonlinear results for the venetian
blind and pinched cylinder, it is noted that the present results are
based on the same meshes used in the STAGSA finite difference
analyses performed by Brogan and Almroth [41]. The above comparison
of linear results indicates that these meshes are not sufficiently

‘ fine to render completely converged solutions for W Furthermore,
the rate of convergence with mesh refinement is likely to be
different for the STAGSA and STAGSC-1 solutions. Consequently, the
STAGSC-1 results for the venetian blind (Figure 6.34) and pinched
cylinder (Figure 6.35) agree as well as could be expected with the
STAGSA solutions, with respective collapse loads PC for the
venetian blind differing by about 5% (Table 6.16). A similar
comparison of collapse loads for the pinched cylinder could not be

1 made because the STAGSA solution in [41] was terminated before

' collapse.

B. Nonlinear Behavior of Venetian Blind

For comparison, Figure 6.34 shows load-displacement plots obtained
from both the displacement-controlled (DC) and load-controlled (LC)
analyses. The following observations and comments stem from an
examination of this figure and Tables 6.16 and 6.17:

(1) The collapse loads predicted by the DC and LC analyses agree to
three significant figures.

(2) The LC analysis required over 8 times as many steps to reach the
1imit point and is 6 times as expensive up to this point. '

(3) The relatively large number of load steps provides a very smooth
{ LC curve at all load levels. The DC curve drifts away from the
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(4)

(5)

more accurate LC curve in a local region and then properly
returns to it upon a refactorization at a later displacement
step (w = .02"). Since the same (default) value of the
convergence criterion is used in both analyses (see Table 6.17),

and since there are fewer steps in the DC analysis, it appears
that satisfaction of convergence is so much easier in a DC
analysis that it sometimes accepts too large a displacement
step. This apparently causes a "drift" in the DC solution from
the “true" solution (appropriate to the chosen mesh) that is
eventually corrected by the Newton-Raphson solution procedure.
Such a local drift is generally of little consequence.

STAGSC-1 has the advantage and convenience of automatically {
reducing the load or displacement step {as permitted by NCUT) ‘
when convergence difficulties are encountered. Thus, it is

easier for STAGSC-1 to home-in on the collapse load in a LC

analysis than it is for other programs, such as MARC [26], for

example, in which input values of the load steps cannot be

reduced internally by the program to reflect the increasing
ill-conditioning of the stiffness matrix as P’Pc' Such
programs generally require more restarts to obtain the collapse
load to the same degree of accuracy.

The post-collapse curve obtained from the DC analysis shows that ¢
the point loaded venetian blind is imperfection-insensitive in i
the sense that collapse loads for perfect and slightly imperfect

venetian blinds are expected to differ by a small amount. Of

course, the post-collapse curve cannot be determined from a LC

analysis unless special procedures are used.

Nonlinear Behavior of Pinched Cylinder

The sketch of the 12x8 variable mesh given in [41] was scaled to

4
provide the axial and hoop intervals given in Table 6.19. The ;i

corresponding STAGSC-1 solution in shown by the upper
load-displacement plot of Figure 6.35. Inspection of the figure
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reveals that collapse of the pinched cylinder is not catastrophic.
The load drops off by only 1% from its value at collapse to its
minimum post-collapse value, while the corresponding displacement
increases by just 4% before stiffening behavior takes place. This
portion of the P-wo plot in the vicinity of the maximum and minimum
points was routinely traced out by STAGSC-1, as was the entire P—w0
curve,

These results are useful in a general sense because this is the first time
that collapse has been predicted for a pinched cylinder. Hence collapse of
the considerably thinner poked cylinder (R/t = 638 versus 100) was seen to be

f a definite possibility, and was therefore investigated. However, specific
numerical values and details of the pinched cylinder results may be inaccurate
because (1) the mesh is not fine enough to provide converged values of the
radial displacement and smooth hoop spatial variations for stresses, (2)
computed rotations (25° at collapse) exceed the range of permissible values
for valid application of the theory employed in STAGSC-1, and (3) computed
stresses at collapse for this relatively thick cylinder indicate that
plasticity effects (not considered here) are significant even at points away
from the load.

6.4.3 ANALYSIS OF THE POKED CYLINDER
A. Mesh Considerations
It was decided to use the finest mesh that would not be unduly

expensive and that would not exceed the core storage limitation that
the total number of nodes mxn could not exceed 528 (on the

-

0 Westinghouse CDC7600), which was determined by trial and error from
}inear runs. The chosen variable mesh with mxn = 16x32 = 512 nodes
(Table 6.19) over the half-length and half-circumference is based on
results obtained from two preliminary linear runs in which the mesh
spacing was coarse in the axial direction(x) and fine in the hoop
direction{y) for the first run, and vice versa for the second.
Approximately five elements were then used to span the first half

( wavelength of the change in axial curvature x, in the hoop and
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axial directions obtained respectively from the first and second
runs.” The size of consecutive axial and hoop intervals was then
selected to increase geometrically by 20 and 10%, respectively, as
may be deduced from Table 6.19. Linear results appropriate to the
finer 16x32 mesh provided about the same wavelengths as those
obtained from the preliminary runs, and were found to agree well with
available series solutions, as is discussed below. Therefore, the
16x32 mesh was also thought to be adequate to describe the nonlinear
behavior of the cylinder because the inward deformation pattern under
the load spreads out with increasing l1oad, and this results in an

increasingly greater number of nodes spanning the pattern.

B. Linear Behavior & Comparison with Previous Solutions

Figures 6.36 and 6.37 show the hoop variation cf the radial
displacement w at midlength (x = 0) and the hoop bending moment M

at the axial position x = 3.5"~(1/140)(L/2). The rapid decay of the
oscillatory hoop variations with increasing circumferential angle

¢ = y/R is also typical of the STAGSC-1 results for the axial

e e i ks < a2 )

PR i m W

bending moment M, and the axial and hoop membrane forces N, and

Ny. In contrast, the axial variations of w and M_ decrease

monotonically to zero at the simply supported edge (x=L/2), as is

shown in Figures 6.38 and 6.39 for the variation of w along the

loaded generator (¢ = 0°) and My along a neighboring generator

(¢ = 1/2°). For poked shells, note that the slow decay of w in the ,
f axial direction is also evident from graphs given in [43] for longer 3

cylinders (L/R = 4), and from results for long doubly curved shells

presented in [44] where it is mentioned that displacements spread N

much further in the direction of the smaller curvature than in the

direction of the larger one. Also note that the axial attenuation

| length for w is very large for the closely related case of a pinched
cylinder (see [45]).

FUPRR R N

*kx is the response variable with the shortest significant wavelengths
in both directions, Therefore, results are more accurate for the more slowly
varying and lower order kinematic variable w(x,y), the radial displacement.
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The above linear results are in qualitative agreement with series

solutions given by Bijlaard [43,46,47] and Mizoguchi [48] for thicker

and longer cylinders. Quantitative comparisons are afforded by the

f series solution presented by Kempner, Sheng, and Pohle [49] for a
range of shell geometries that spans the geometry ( R/t = 638, L/R =
.892) of the poked cylinder analyzed here. The radiai loading ’
considered in [49] is an axial line load distributed uniformly over
Jjust 5% of the shell length, and located symmetrically about the
midlength of the cylinder. A cylinder with such a short line load
provides a good check case for the point locaded cylinder. Tabular
results are presented in [49] for w, MX, My, NX and Ny at the
following points:(x,y) = (0,0), the location of the resultant load P;
(L/4,0), the "quarterlength® point on the loaded generator midway
between P and one end of the cylinder; and (0,L/4), the corresponding
quarterlength point on the circumference through P. Results at the
first point for R/t = 500 and 800 and L/R = .2 and 1 were
logarithmically interpolated to provide values of the radial
displacement and the stress resultants appropriate to R/t = 638 and
L/R = .892. STAGSC-1 values of the stress resultants at the
quarterlength points were determined from known values at neighboring
centroidal® points by means of linear interpolation in one
direction, and extrapolation to the symmetry plane in the other
direction. The extrapolated values were obtained by passing a fourth

i order polynomial with even terms (because of symmetry considerations)

through three points and by evaluating the polynomial at the origin.

} The series solution [49] and STAGSC-1 results for the three points

* under consideration are compared in turn in the three horizontal

sections of Table 6.20. Stress resultants that are small or which

*The option to print out values of the stress resultants (or stresses
or strains) at the Gaussian integration points doesn't work. Thus, only
centroidal values are printed out.

1
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have very rapid spatial gradients+ at the quarterlength points are
omitted from the comparison. Examination of the table reveals that
the STAGSC-1 results differ from the series solution predictions by
an average of only +5.4%, with minimum and maximum deviations of +.4
and +11.1%. Furthermore, each STAGSC-1 result is above the
corresponding series solution prediction, and thus properly reflects
the more severe nature of the concentrated loading condition. In
view of the interpolation and extrapolation procedures employed to
arrive at a common basis of comparison, and because slight phase
shifts or dispersion in shape at points of moderate spatial gradients
may very well lead to percent differences on the order of those given
in the table, it seems that the agreement between the STAGSC-1 and
series solutions for the two slightly different loading conditions is
about as good as can be reasonably expected. This favorable
correlation of linear results instills a sense of confidence in the
reliability of the STAGSC-1 code in general, and in the adequacy of
the particular mesh selected for the poked cylinder analysis,
certainly at least with regard to the prediction of linear behavior.

C. Nonlinear Behavior and Collapse

Load-Displacement Behavior

The continuous load-displacement curve in Figure 6.40 represents the
"best" solution obtained here by refining values of the strategy
parameters in the DC analysis. Regions I and II in the figure
represent less accurate solutions that are discussed later. The
initial linear portion of the curve is seen to extend over only about
10% of the load range to collapse and over about 4% of the
corresponding displacement range. The curve then bends over rapidly

*Comparisons at points of rapid spatial gradients can result in deceivingly
large percent differences, as is exemplified by consideration of two
identical shapes that are slightly out-of-phase (shifted relative to one
another in the coordinate direction).
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for a short range of load levels during which the initially
compressive axial and hoop membrane stresses near the load become
tensile (see Fiqure 6.41), due to local geometry changes, and remain
tensile thereafter. Figure 6.40 shows that collapse occurs at the
Timit point of the curve at the following values:

PC = 773,000 1b
We o= 65.6"
: or
,'
wc/t = 37.5
| Somewhat suprisingly, the post-collapse behavior could not be

determined from the DC analysis. Strategy parameters were then
varied in a number of unsuccessful runs, each one being terminated at
} the same 1imit point with a message that the stiffness matrix ceased
to be positive definite. It is possible that the load-displacement

curve is very steep (stiffening behavior) immediately after the limit H
point, or that it has a sharp maximum there, or both. Another :
possible explanation is given after consideration of spatial ]
variation plots.

Spatial Variations

Hoop and axial variations of w and My at collapse are displayed in

Figures 6.42 - 6.45 and are to be compared with the corresponding i
spatial variations for the case of linear behavior at low load levels

(Figures 6.36 - 6.39). Comparison of Figures 6.36 and 6.42 for the N
hoop variation of w at midlength shows that the inward deformation

e

pattern under the load spreads out with increasing load (as is easily
demonstrated by poking at a thin-walled beer can) and that the shapes
are similar otherwise. In contrast, Figures 6.43 and 6.37 reveal

that the hoop variation of My at collapse is markedly different
( from that at low load levels. The jumpy behavior exhibited in Figure
6.43 near ¢ = 20° is due to the development of a sharp hoop
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curvature, which is suggested by the displacement results of Figure
6.42, and which is shown directly in the plot of the change of
curvature, <y given in Fiqure 6.46. It is possible that the
failure to trace out the post-collapse portion of the P-wo curve
may be due to ill-conditioning associated with this region of sharp
curvature. It is interesting to observe from Figure 6.46 that the
sharp curvature near ¢ = 20° is preceded by a spatial region in
which Ky N - 1/R so that the total curvature (xy + 1/R) is

‘ approximately zero, or in other words, the inward displacement (¢ <

20°, see Figure 6.42) is circumferentially flat at collapse except,
of course, in the immediate neightborhood of the load. Figure 6.44
shows that w is flat also axially for x>L/20. Interestingly,

comparison of the load-deformation plots of Figures 6.47 and 6.40 for
xy near ¢ = 20° and for Wo reveals that ¢« starts to grow rapidly

at a load level (P/4 ~ 150,000 pounds) which corresponds to the
beginning of the jog (inflection region) in the P—w0 plot of Figure
6.40.

Scaled Down Model

A scaled down model of the poked cylinder was observed to deform into
a spreading diamond shaped pattern with rounded "corners" at
midlength (see Figure 6.48). The circumferential corners became
increasingly sharper with increasing load until a subtle and
noncatastrophic collapse occurred at one and occasionally both of the ﬁ
corners. The collapse mechanism appears to be an asymmetric (about t
midlength} local snapping, which was sometimes accompanied by a loud .
ping. Such collapse behavior was noticed at most but not all 3
successively poked points of the model. Regardless of whether

collapse was discernible, stiffening behavior was observed to take ;
place at all poked points after the circumferential corners became.
sufficiently sharp. It is interesting to mention that these corners
appear to correspond to the above discussed regions of sharp
curvature near ¢ = 20° at midlength that are predicted by the
STAGSC-1 analysis.

11
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Mesh Considerations in Retrospect

As mentioned earlier, the chosen mesh was thought to be satisfactory
for the nonlinear analysis since it provided essentially converged
linear results that are in good agreement with available analytical
solutions, and because the number of nodes spanning the spreading
inward deformation pattern under the load increases with increasing
load. Evidently, this mesh {or any finer mesh) is inadequate to
describe accurately the corner near ¢ = 20° at midlength. However,
it is important to point out that the solution for the radial
displacement w(x,y) may still be accurate, since displacements
converge much more rapidly than higher order derivative variables

(M or « ). If this is the case, and since the P-w_ curve of

Figure 6.40 has a limit point (part ¢ of figure), it follows that the

above value of the collapse load at this point would also be accurate.

Consideration of Strategy Parameters

It has already been shown that the DC solution for the venetian blind
drifts away from the more accurate LC solution in a local region of
the P-wo curve. Such drift was also observed in two instances in

the DC solution for the poked cylinder, as shown by regions I and II
in Figure 6.40. Recall that the continuous curve in the figure
represents the "best" solution obtained here by refining values of
the strategy parameters governing the convergence criterion (DELX)
and the freguency of refactoring (NEWT) so as to eliminate drift.
Specifically, drift in region I was eliminated by tightening DELX to
10'4 from its default value of 10'3, and drift in region Il was
smoothed out by forcing refactoring at every step. It is interesting
to note that the drift in region 11 (see Fig. 6.40b) might be
interpreted as signifying collapse, which would be spurious.

In view of the improvement brought about by the NEWT=-1 solution in
region II, an additional run was made to determine if the drift in
region I could similarly be avoided by refactoring at every step,
instead of by tightening the condition for convergence. That this
happens is evident from inspection of Figure 6.49 for the following
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three solutions, which are shown are shown to an expanded scale: (1)
default (DELX = 10'3, NEWT # -1), (2) tighter convergence

(1074, # -1) and (3) successive refactoring (1073, -1). It is
significant to observe that the solution based on the more stringent

convergence criterion costs 2.25 times as much as does the one which
forces refactoring at every step, since it requires more steps (see

T Y

Table 6.21). Furthermore, it actually requires one more
refactoring,* as is also shown in Table 6.21. Indeed, the solution
f l based on successive refactoring turns out to be 26% cheaper than the
' default solution, since it required roughly half as many steps.
Similarly, comparison of run times for both DELX=10'4 solutions for
region II of Figure 6.40 shows that the solution with successive
refactoring is 23% cheaper. It appears that the savings due to the
bigger load steps allowed by successive refactoring more than offsets
the cost of the additional refactorings for this size problem.

The foregoing resuits now make it possible to recommend a simple
computational procedure for the economical DC analysis of the
nonlinear softening behavior of shells that can be modelled as small
or modest size problems on STAGSC-1.

E. Recommended Computational Procedure for Displacement-Controlled
Analyses

Step 1: Start the analysis with the default value of DELX=10"3

the convergence criterion, unless there is a special reason

for

to proceed otherwise, and let the program decide when
refactoring should take place (NEWT>0).

*The refactoring that always occurs during the first step of a restart run is
excluded from this relative comparison.
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Step 2: Require refactoring at every displacement step (NEWT=-1)
when convergence difficulties or inaccurate solutions are
first encountered. Set NEWT=-] for the rest of the
analysis until stiffening behavior occurs in the
post-collapse portion of the load-displacement curve.

Step 3: Reduce DELX each time subsequent computational problems
arise,

Note that this computational procedure may not be economical for
problems with large bandwidths because of the cost of refactoring.
The present results indicate that it is economical for the largest
problem considered here, which has 512 mesh points and an average
semi-bandwidth of 128. Also note that the procedure does not apply
to a load-controlled analysis since such an analysis generally
requires smaller steps for satisfaction of convergence than does a
displacement-controlled analysis. This is illustrated by the
venetian blind results (Figure 6.34).

6.4.4 CONCLUDING REMARKS AND RECOMMENDATIONS

The quadrilateral flat plate element 411 with 2x2 integration points was used

in analyses of the geometrically nonlinear behavior and collapse of a point

loaded venetian blind and of pinched and poked cylinders. Displacement-

controlled analyses were performed for all three shells along with a

load-controlled analysis of the venetian blind. Conclusions and

recommendations stemming from these analyses are as follows:

A.
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The load displacement curves up to the limit point were obtained in a
straightforward way for the three problems. Changes in user strategy
during the course of the analysis were required only for the poked
cylinder due to convergence difficulties or indications that
inaccurate solutions had been accepted. In this respect it is worth
noting that the user has some control over the sophisticated but
flexible strategy in STAGSC-1,and this allows for a more efficient
use of the program.
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The STAGSC-1 results agree well with linear series solutions and with
a limited number of finite difference nonlinear solutions.

A displacement-controlled (DC) analysis is considerably cheaper than
a load-controlled (LC) analysis of the same problem, but may require
more decisions pertaining to the selection of the strategy parameters
governing the convergence criterion (DELX) and the frequency of
refactoring (NEWT). Specifically, the DC analysis of the venetian
blind was 6 times cheaper than the LC analysis and required 8 times
fewer steps to reach the same limit point.

Because satisfaction of the same convergence criterion is so much
easier, it appears that too large a step is sometimes accepted in a
DC analysis. This may cause the load-displacement curve to drift
away from the “true" solution appropriate to the given mesh. For the
venetian blind, the DC curve drifted slightly away from the more
accurate LC curve in a local region and then properly returned to it
when the program decided to refactor at a later step. Drift in the
poked cylinder results required a restart from a previous accurate
solution with different values selected for the strategy parameters.
Thus, drift is either inconsequential or easily corrected, and is a
small price to pay for the relatively greater economy of a DC
analysis.

For modest size problems, drift can be eliminated at a lower cost by
refactoring at each displacement step instead of sharpening the
convergence criterion,

Based on these results, a simple computational procedure is

recommended for the DC analysis of the nonlinear softening behavior
of shells that are run as small or modest size problems on STAGSC-1.

A DC load-displacement curve is smoother if solutions only at
refactored steps are plotted.
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H. STAGSC-1 has the advantage of automatically reducing the load or
displacement step when convergence difficulties are encountered, such
as when the limit point is approached. Thus, in a LC analysis it is
easier for STAGSC-1 to home-in on the collapse load to any degree of
accuracy than it is for some other programs in which input values of
the load step cannot be reduced internally.

I. Since knowledge of the post-collapse behavior is important,
consideration should be given to the implementation of special
techniques [50] that allow a limit point to be passed in a LC
analysis.

J. The scope of the post-processor (STAPL) should be expanded to include
variable-variable plots or "history" plots to give plots of load vs.
displacement, for example, and to include "snapshots" of the spatial
variation of the response variable along a selected grid line at a
specified load level (or time point).

K. Finally, it seems appropriate to close by remarking that experience
gained here engenders a sense af canfidence in the reliability of the
elastic nonlinear capability of STAGSC-1.

6.5 PROGRAM EFFICIENCY

The evaluation of the computational efficiency of STAGSC-1 has been based on
execution statistics compiled during the course of this study. It is
necessarily subjective because all the work has been performed on the
Westinghouse Power Systems Computer Centre CDC 7600 installation. This system
has a relative.y small central core memory (SCM) (1510008, 60 bit words)

which is augmented by 6000008 words of large core memory (LCM) and 65,0
million words of high speed disk storage. The STAGSC-1 version implemented on
this system is not configured to use LCM and any data which is not required in
core is buffered to and from disk.

The measure of cost on the CDC 7600 is the computer resource unit (CRU) which
is determined by means of an algorithm combining the usage of small and large
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core memory, mass storage, input/output transfers, number of disk accesses and
central processor time. The dayfile output gives a breakdown of the total CRU
usage into its individual components thus giving insight into relative costs
of computation and data handling. It must of course, be emphasized that this
is subjective because of the weighting assigned by the charging algorithm to
these various components. Nevertheless, such statistics do shed light on the
performance of STAGSC-1 because it becomes apparent where improvements could
be made. The most valuable data are direct comparisons between solutions
obtained by STAGSC-1 and other programs to the same problem. However, such an
in-depth investigation would have exceeded the resources available for this
project and therefore only one such comparison was made.

The data presented cover linear and nonlinear static analyses, small and
larger size problems, linear and nonlinear dynamic transient and nonlinear
collapse analyses. Table 6.22 provides details of the execution statistics
for fifteen separate analyses, including one problem using the MARC program.
The central processor time (CPU) and the total resources used (CRU) are given
for both the pre-processor (STAGS1, MARCPRE) and the execution phases (STAGSZ,
MARCSTR). For all but the smallest of problems, the resources used by STAGS]
are a very small proportion of the total and will not be discussed further.
The final column of Table 6.22 is an index which is the ratio of CRUs to CP
hours and is a measure of the execution efficiency (or, more realistically,
inefficiency) of the program. Qualitatively, it is the ratio of the total
resources used to the resources used solely in computation. The average value
is 14.9 with a maximum spread of -5.5 to +6.0. This compares well with the
value of 14.5 obtained for the MARC problem. Table 6.24 presents a comparison
between several structural analysis programs in use on the Westinghouse
system. This shows that STAGS uses the most total resources per central
processor hour.*

Returning to the data in Table 6.22, the one point of direct comparison
between STAGSC-1 and MARC shows that although, on a relative basis, MARC

*An interesting feature is that the performance of two different versions of
ANSYS is apparently very different and is a consequence of the later version
(Revision 3) being tailored to run efficiently in the interactive mode.
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performed more efficiently than STAGSC-1, MARC used 2.8 times the resources to
' } solve the same problem. Ultimately, it is on such a basis that a program must
finally be judged (other things, such as accuracy, being equal). Table 6.23
gives details of the way in which the computer resources were used in a number
of STAGSC-1 runs. In all but two cases, the number of disk accesses was the
largest contributor to resource usage. Although this is a direct function of
the particular charging algorithm employed, it is nevertheless indicative of a
potential area for program improvement. On the CDC 7600, this would be
reduced by the use of large core memory (LCM),

To sum up, it appears that STAGSC-1 uses a significantly larger amount of
total resources for a given computational effort than other structural
analysis programs on the Westinghouse system. Much of this resource usage is
] due to accessing disk storage. On the other hand, an absolute comparison
‘ between STAGSC-1 and MARC suggests that STAGSC-1 is much more efficient in its
total resource usage for a given problem. This indication is supported by

user experience in a qualitative, but undocumented sense.

a :
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TABLE 6.1
LINEAR CONVERGENCE OF ELEMENTS 410 and 420 FOR THE
CLAMPED, PRESSURE LOADED SQUARE PLATE

— ess = =0 !

bt R Lo st st Atniafiniiaint s L A e 2 it e et Lo hatiinchiiate o) o

i QUAF 410 QUARC 420
‘ No. of
! E lements Wa (in) % Error Wp (in) % Error
; .25103 -8.78 .24292 -11.73
; .26461 -3.85 .27104 -1.51
| 16 .26969 -2.00 .27487 -0.12
E 25 .27208 -1.13 .27579 +0.21
]
| | TABLE 6.2
i NONLINEAR CONVERGENCE OF ELEMENTS 410, 411, 420, 422 FOR THE
CLAMPED, PRESSURE LOADED SQUARE PLATE
% Error
No. of
£ lements QUAF 410 QUAF 411 QUARC 420 QUARC 422
4 -13.6 -5.51 -12.60 -6.75
9 -7.16 -4.,63 -4.,88 -2.46
16 -4.75 -3.38 -3.32 -1.67
25 -3.52 -2.69 -2.54 -1.45
64 -2.19 -- -- --
{
I |
f
d Il 19
. 0920B-868:2
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TABLE 6.3 '
NONLINEAR FLAT PLATE ANALYSIS: EXECUTION STATISTICS
Element No. of No. of Total CPU secs '
Run Type Elements  Steps CPU secs /step Comment s
10 QUAF 4 19 1.977 0.1041 Step halved once.
410
1 QUAF 9 19 3.500 0.1842 Step halved once.
410 1 Refactoring.
9 QUAF 16 19 6.275 0.3303 Step halved once.
410 | Refactoring.
12 QUAF 25 1] 6.106 0.5551 | Refactoring.
410
13 QUAF 4 1 2.018 0.1835 1 Refactoring.
an
14 QUAF 9 11 4.308 0.3916 1 Refactoring.
{ 4n
; 15 QUAF 16 11 6.974 0.6340 1 Refactoring.
: an
16 QUAF 25 11 10. 171 0.9246 1 Refactoring.
411
17 QUARC 4 18 3.749 0.2083 Step halved once.
420
18 QUARC 9 19 11.389 0.5994 Step halved once.
420
19 QUARC 16 19 17.885 0.9413 Step halved once. |
420
20 QUARC 25 1M 19.375 1.7614 1 Refactorinyg.
420
21 QUARC 4 19 5.056 0.2661 Step halved once.
422 1 Refactoring.
22 QUARC 9 1 8.055 0.7323 1 Refactoring.
422
23 QUARC 16 1" 14.142 1.2856 1 Refactoring.
422
0920B-868: 2 12
(S3034) 43 0
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Element
Run Type
24 CUARC
422
25 QUAF
410
09208-84B: 2
(S3034)

No. of
Elements

25

64

TABLE 6.3 (Continued)

No. of
Steps

1

11

Total
CPU secs

21.934

13.456

121

CPY secs
/step

1.9940

1.£23¢

Comments

1 Refactoring.

1 Refactoring.

o

o~




TABLE 6.4
QUAF 410--STIFFNESS EIGENMODES

Mode Eigenvalue Type Description

1 0.0 Rigid Body

2 0.0 Rigid Body A1l of the “"rigid body" modes are linear
combinations of the three translational and

3 0.9 Rigid Body the three rotational modes. However, the
rotations about the normal (Rw) are not

4 0.0 Rigid Body consistent in the rigid body sense with the
other five d.o.f. There appears to be some

5 0.0 Rigid Body kinematic freedom in the shape functions
which gives rise to the extra rigid body

6 0.0 Rigid Body freedom.

7 0.0 Rigid Body

8 1598 Membrane Antisymmetric biaxial stretching with
quadratic variation normal to each side.

9 1709 Twist Pure linear twisting.

10 1923 Bending Anticlastic bending.

1 2111 Bending Antisymmetric bending with quadratic and
cubic variation of normal displacement.

12 21 Bending Same as Mode 11 with sides interchanged.

13 3571 Bending Doubly symmetric spherical bending.

14 41296 Bending + Cubic displacement along each edge. Diagonal

Twist bending at two corners, diagonal twist at

the other two.

15 41296 Bending + Same as Mode 14 with corners interchanged.

Twist

16 42260 Membrane Quadratic displacements along two opposite
sides and cubic along the other two.

17 42260 Membrane Same as Mode 16 with sides interchanged.

18 2338060 Membrane "Shearing" mode with cubic displacements

along all four sides.

19 2370460 Membrane Biaxial extension/compression with cubic
displacement along each side.

0920B-86B:2
(S3034)
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TABLE 6.4 (Continued)

Mode Eigen Value Type
20 2370460 Membrane
21 2435990 Membrane
22 4285710 Membrane
23 6870160 Bending +

Twist
24 61861600 tending +
Twist

0920B-868:2
(S3034)

Description

Same as Mode 19 with extension/compression
sides interchanged.

Similar to Mode 8, but with the emphasis on
the corner displacements (as opposed to
normal rotations).

Pure biaxial compression (no corner
rotations).

Diagonal twist at each corner. Cubic normal
displacements along each side. Straight
diagonals.

Similar to Mode 23, but with anticlastic
bending of the diagonals.
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' TABLE 6.6
' FLEXURAL FREQUENCIES IN XZ-PLANE
Frequency (Hz)
' Mode %
. No. STAGSC-1 Exact Difference Comments
‘ ' 1 88.3277 88.8164 -0.6
|
i 2 544.409 556.603 -2.2 Motion in the XZ-plane only.
! , A1l axial and torsional
: 3 1496.60 1558.20 -4.0 freedoms suppressed.
4 2869.83 3054.05 -6.1 20 active degrees of freedom.
] 5 4631.57 5048.56 -8.3
6 6739.66 7541.67 -10.6
7 9140.57 10533.4 -13.2
8 11746.7 14023.8 ~-16.2
] 9 14379.4 18012.7 -20.2
10 16594.3 22500.4 -26.2
{
}
}
{
]
i
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TABLE 6.7
CLOSELY SPACED AND EQUAL MODES

Frequency (Hz)

Mode % Dispt. Ratio
No. STAGSC-1 Exact Difference (XZ/XY) Comment s
1 80.3059  80.7422 -.54 —
10
2 81.1081  81.5496 -.54 10’ 1% difference in
cross-§ection
3 495.253  506.003 2213 —17 dimens ions.
10
4 500.173  511.063 22.13 10!
5  1362.69  1416.54 -3.8 —17
10
6  1376.09  1430.71 -3.8 10’
1 80.3058  80.7422 -.54 6.66
1
2 80.3058  80.7422 -.58 e
3 495,253 506.003 -2.13 1.148 Equal dimensions.
1
4 495.253  506.003 -2.13 8
]
5 1362.66  1416.54 3.8 T
6 1362.66  1416.54 -3.8 1.041
{
0920B-868:2 126
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|
3 ' TABLE 6.8
' FLAT PLATE CANTILEVER FREQUENCIES
Frequency (Hz) % Error
Mode Mode
No. Type Exact STAGSC-1 MARC Zienk. STAGSC-1 MARC Zienk.
1 First Bending 846 750 845 826 -11.3 -0.12 -2.4
2 First Twist 3638 2172 3651 3728 -40.3 0.36 2.5
3 Second Bending 5266 3784 5280 5157 -28.1 0.27 -2.1
4 Second Twist 11870 6335 12100 12055 -46.6 1.9 1.6
TABLE 6.9 §
F 1/4 WAVE MODEL FREQUENCIES i
Fundamental
Mesh Frequency (Hz) % Error
4 x 4 81.58 -2.73
5x5 82.45 -1.69

09208-868:2
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T R
TABLE 6.10 |
1/8 CYLINDER MODEL FREQUENCIES
Frequency Element
Elements  Mode n Hz % Error  Aspect Ratio Comment s l
p 8 Circ. 1 8 75.79 -9.6 2.55 3 modes only
' 2 Axial 4 10 88.37 -13.6 requested
5 6 99.77 -4.6
‘ 16 Circ. 1 8 74.81 ~10.8 5.09 Circumferential
2 Axial 4 10 84.83 ~17.1 refinement
5 6 99.80 -4.6
| 7 12 108.15 -22.3
4 16 Circ. 1 8 82.17 -2.0 2.55 Axial refinement
j 4 Axial 4 10 99,22 -3.0
, 5 6 103.63 -0.9
| 712 133.89 -3.9
16 Circ. 1 8 84.15 0.33 1.27 Axial refinement
i 8 Axial 4 10 103.28 0.92
5 6 104,55 -0.01
7 12 141.69 1.74
TABLE 6.11
1/2 CYLINDER MODEL FREQUENCIES
Frequency Hz
STAGSC-1
Mode No. STAGSC-1 Exact % Error n Comments
1 82.117 83.87 -2.0 8
2 82.39 - - 8 Spurious mode ,
f 3 86.35 87.69 -1.5 7
‘ 4 86.63 -- -- 7 Spurious mode
. 09208-868:2 128
g (53034) 51
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' TABLE 6.12
1/2 CYLINDER MODEL FREQUENCIES

Frequency - Hz

Actual
Mode No. STAGSC-1 Exact % Error n
1 82.17 83.87 -2.03 8
2 86.35 87.69 -1.53 7
3 87.75 89.92 -2.41 9
}
4 99.34 102.3 -2.89 10
5 103.63 104.6 -0.93 6
TABLE 6.13
CRITICAL TIME STEP ESTIMATES - EXPLICIT INTEGRATION
Method Critical at (secs) Comments |
. _ |
(i) 4.94 x 10-6 Based on highest frequency.
(i1) (a) 2.03 x 10-6 Users' Manual formulae. l
(b) 4.08 x 10-6 i
(iii) 2.36 x 10-6 Speed of sound.
N
{
S |
129
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TABLE 6.14
SUMMARY OF RING TRANSIENT ANALYSES

A S A e . o = o =

Time Step
Run  Type Operator at (sec) Comments
10 Elastic- Park 2 x 10-6 Final time reached = 620 x 10-% sec.
Plastic Time limit.
(! flastic- Park Autnmatic Initial at = 2 x 10-6 sec. Increased
Plastic to 16 x 10-6 sec. Solution bredks down.
12  Elastic- Park 2 x 10-6 Final time reached = 1002 x 10-6 sec.
Plastic TAPEZ22 saved for restart.
13 Elastic- Park 2 x 10-6  Attempted restart failed. Message indi-
Plastic cated plasticity data could not be found.
14 Elastic Park 2 x 10-6 Small number of iterations required per
time step (2 or 1).
15  flastic Park 20 x 10-® At reduced to 10 x 10°% sec. at
Step 2. Small time limit (8 secs).
16 Elastic Park 10 x 106 2000 x 10-6® secs. reached. Increased

at caused periodic refactoring.

17 Elastic  Trapezoidal 10 x 10-6  Pperiodic refactoring.

18  tlastic Trapezoidal 2 x 10-6 No refactoring. Average of 2 iterations
per time step.
19 Elastic  Gear 2nd 10 x 10-6  periodic refactoring.
Order
20 Elastic Gear 2nd 2 x 10-6 No refactoring. 1 or Z iterations per
Order time step. oL
21  Elastic Gear 3rd 2 x 10-6 A Yot of refactoring after 240 x 10-6
Order sec. Determinant changed sign at 336 x
10-6 sec.
22 Elastic Explicit 1 x 10-6 Divergence occured after 14 steps.

23 Elastic Explicit Y x 107 Time limit after 265 steps.
24 Elastic Explicit 5 x 10-7 Divergence occured after 17 steps.

2% tlastic  txplicit I x 10~/ Solution obtained out to 1710 steps.
Time limit.

130
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TABLE 6.15
NONL INEAR TRANSIENT EXECUTION STATISTICS

No. of CPU  CPU secs/

Run Type Operator Steps secs. Step CRU  CRU/Step Comments
12 Elastic- Park 501 200.45 0.400 0.798 .00159 Approx. 1 iteration/
Plastic step. Also plastic

sub~iterations.

14 Elastic Park 1000 139.61 0.140 0.587 00059 2 iterations/step.
No refactoring.

16 Elastic Park 200 45.88 0.229 0.169 .00085 2 to 7 iterations/
step. Periodic
refactoring.

17 Elastic Trapezoidal 200 63.28 0.316 0.215 .00108 2 to 6 iterations/
step. Frequent
refactoring.

18 Elastic Trapezoidal 1000 141.53 0.142 0.593 .00059 2 iterations/step.
No refactoring.

19 E]asfic Gear 2nd 200 38.84 0.194 0.148 .00074 2 to 7 iterations/
Order step. Periodic
refactoring.

20 Elastic Gear 2nd 1000 119.04 0.119 0.5M1 .00051 1 or 2 iterations/

Order step. No refactoring.
21 Elastic Gear 3rd 167 44.85 0.269 0.156 .00093 2 to 20 iterations/
Order step. Much
refactoring.

25 Elastic Explicit 1710 316.54 0.185 1.271 .00074 No iterations or
refactoring necessary.
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Table 6.16 Dimensions, Material Properties and Collapse Loads

g2 v

% dift. is relative to STAGSA collapse load

5407-78

132

PINCHED POKED
VENETIAN BLIND CYLINDER CYLINDER
P, W,
GEOMETRY
' R = mid. surface radius (in.) 25 5 1117

L =length (in.) 6 1.0 996

t = thickness (in.) .01 005 1.75

¢, = opsning angle 450 - -

R/t 250 100 638

L/R 24 2 .892
MATERIAL PROPERTIES

E = Young's modulus (psi) 107 107 2.79 x 107

v = Poisson’s ratio 3 3 3
BOUNDARY CONDITIONS

curved edges $S SS SS

straight sides F - -
COLLAPSE LOAD Pc (Ib)

i
N STAGSC-1
‘ DC = dispcont. 235 12.14 773,200

LC = load-cont. 2.36 - -

STAGSA (Brogan & Almroth) 248 - -

% diff. 5.2 - —

SS = simply support (classicat)

F =free




TABLE 6.17
PARTICULARS OF FINITE ELEMENT

Average Semi  Number Number of
Problem Mesh O0F  _-Bandwidth of Runs  Steps to: __CPs
Type m r Fo Tena Fe
Venetian Blind unif. 10 8 603 64 DC: 1 19 30 37
Ltc: 2 157 157 198
Pinched Cylinder var. 12 8 £93 61 5 45 59 248
Poked Cylinder var. 16 32 4185 128 11 102 102 2717

m,n = Number of mesh points in axial & circumferential directions, respectively
DOF = Number of active degrees of freedom

Pc = Collapse Voad at Yimit point of P-wo curve

Pend = Denotes end of analysis

CPS = (omputer processing seconds on the Westinghouse CDC-7600 computer

CRU = (Computer Resource Units

$ Cost is based on in-house rate of $90/CRU

DELX Error tolerance for convergence. Default value is 10'3

H

(Note that the default value of the relaxation factor WUND was used in all anal

133
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!
EMENT ANALYSES

!
|
]

_cps CRU $
|
 Tena Pe Pens e
g 65 170 297 15
| T8 1.021 1.021 a2
8 289 940 1.098 5
7 3717 21.367  21.367 1923
1y
P]l analyses)

o

a9

1923

kefacter at

DELX Every Step ?
10-3 No
10-3 e
10-3 Ne
-3 -4

,10°4.107° Yes for Pap_
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TABLE 6.18
COMPARISON OF LINEAR SOLUTIONS FOR VENETIAN BLIND
AND PINCHED CYLINDER PROBLEMS

Problem Mesh w Et/P
! o 0
f (mxn) STAGSC-1 Prev. Sol. % piff. ()
!
Venetian Blind 10x8 1091 1s6(b) 5.6
Pinched Cylinder 12x8 148 -9.8
164(¢)
23x15 160 -2.4

(a) % difference is relative to the previous solution
(b) Brogan & Almroth, 1971
{c) Lindherg, et al., 1969

—
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TABLE 6.19
VARIABLE MESHES USED IN PINCHED AND POKED CYLINDER ANALYSES

Size of Intervals in Axial & Hoop Directions

Pinched Cylinder _____Poked Cylinder
Row (or Col.)
Numbers Axial(in.) Hoop (deg) Axial{in.) Hoop{degq)
1-2 .0124 3.481 7 1
2-3 .0170 5.469 8.4 1.1
3-4 .0232 6.96 10.08 1.21
4-5 .0341 10.94 12.096 1.331
5-6 .0449 19.89 14.5152 1.4641
6-7 .0495 21.38 17.4182 1.6105
7-8 .0557 21.88 20.9019 1.7716
8-9 .0651 25.0823 1.9487
9-10 .0650 30.0987 2.1436
10-1 .0665 36.1185 2.3579
11-12 .0666 43.3422 2.5937
12-13 52.0106 2.8531
13-14 62.4127 3.1384
14-15 74.8952 3.4523
15-16 83.6286 3.7975
16-17 4.1172
17-18 4.5950
18-19 5.0545
19-20 5.5599 !
20-21 6.1159 3
21-22 6.7275
22-23 7.4002 it
23-24 8.1403 i
24-25 8.9543 N
25-26 9.8497 :
26-27 10.8347 g
27-28 11.9182 ‘ ;
28-29 13.1100 ,
29-30 14.4210 ¢
30-31 15.8631
31-32 15.5060

The size of consecutive axial and hoop intervals for the poked cylinder
increase geometrically by 20% and 10%, respectively, except for the last

i
Load is applied at Row 1 and Column 1. ‘
|
interval. ' 1
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Table 6.20 Comparison Of Linear Results For The Poked Cylinder

Location \ Varisble STAGSC-1 Kempner et al. % Ditf.(a)

P ——-Il-—L

' m 20

—— e em . WS B N

at losd, x=y=0 w, Et/P 1082 1045 45
x=L/4 wEt/P 368 366 4
y= MVIP 01542 01492 33
m, /P 00405 00385 2.7
N, R/P 15.04 13.72 96
x=0 wEt/P M6 325 65
y=L/4 NxR/P 21.50 24.75 141
Average = 54%

(a) % Difference is Relative to Previous Solution

i
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DELX =

Refactor at
Every Step?

CRU =

wo(in.)

18.5
19
19.5
20
20.5
21
21.5
22
22.5
23
23.5
24
24.5
25
25.5
26
26.5
27
27.5
28
28.5
29
29.5
30
30.5

*Automatic refactoring during first step of restart run

*Refactoring

09208-868:2
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TABLE 6.21

COMPARISON OF THREE SOLUTIONS FOR REGION 1

Base Run

(Default)

10-3

No

2.582
p
T (1b)

71592+

78449
82842*

86392
86421*
88421
90249
90539*
92010
92873
94727+

97309
102340
99486

“Tighten

Conv." Run

10-4
No

4.298
P
7 (1b)

-———

69880+
71523
73453
75364
76888
78360*
797
81538*
83104
84742
86113*
87593
89106
90460+
91847+*
93289*
94826
96537+
97359
98530
99774*
101470
102800
103870+
105140*

137

“Refactored"
Run

10-3

Yes

73319*
76626*

82933*

88592*

93625*

98397+

03020*
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TABLE 6.23
STAGSC-1 EXECUTION STATISTICS - 2

Percent of lotal CRUs

1/0 Uisk Disk
Run Description SCM  I/0 Buffers Storage Accesses CP
CYLROOF Gravity loaded cylindrical 13.0 17.4 4.4 0 52.2 13.0
05 roof. Linear static.
PLATETRAN Linear transient analysis 13.2 2.6 2.6 0 73.7 7.9
06 of flatplate. Trapezoidal
' integration
MARC DEMO Same as above using MARC 16.1 4.6 1.1 0 67.8 10.3
PROB401A  and modal superposition.
RINGSTAT Elastic-plastic, static, 21.0 22.6 4.8 0 37.1 14.5
05 large disp. Center
loaded ring.
RINGTRAN  Elastic, large disp. 15.9 22.5 3.3 0.5 47.3 10.4
16 Ring with initial
velocity. Park method.
RINGTRAN  Same as above using 5.1 3.1 2.1 1.3 68.4 9.9
25 explicit method.
WMSLOJA Pinch-loaded cylinder. 16.0 35.8 2.8 0.6 34.3 10.5
Nonlinear collapse.
! WMSLO7Y  Point-loaded cylinder 13.0 42.9 2.1 1.5 33.8 6.6

Nonlinear collapse.

-
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TABLE 6.24
COMPARATIVE PRUGRAM STATISTICS
| |
CRU__
Program CP hr. '
STAGS 16.6
!
MARC 1.5
WECAN 9.1
' ANSYS 5.8 ?
! Rev. 2 ‘}
ANSYS 12.0
i Rev. 3
PLACRE 10.6
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SIMPLY SUPPORTED 40°
EDGE

l SHELL WEIGHT =90.0 1b/ft
E =3.0x10% ib/in2
v =0.0

Figure 6.1 Simply Supported Cylindrical Roof
- Gravity Load
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5407-9

b/2 2
\5/ PRESSURE = 12500 Ib/in
b =20in.
t =0.1in.
E =10x 100 b/in?
v =03

Figure 6.4 Flat Plate Problem
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50 LEGEND:
=== NONLINEAR SOLUTION
enos= LINEAR SOLUTION
0 ] A1 1 L
0.00 0.25 0.50 0.75 1.00 125 1.50 1.75
wA/t
l Figure 6.5 Flat Plate with Clamped Edges (Ref: Roark p. 408)
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<
2
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= 025
[ X ]
Y]
wd
[
[T ]
o
024 |
b =20in
023 - t =01in.
v =03
E =10x105 b/in? b/2
P =12500 bb/in?
0 5 10 15 20 25 30
NUMBER OF ELEMENTS
Figure 6.6 Flat Plate with Clamped Edges Under Uniform Pressure Loading
-- Linecar Element Convergence
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Figure 6.7 Flat Plate With Clamped Edges Under Uniform Pressure
— Nonlinear Solution 3
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Figure 6.8 Flat Plate with Clamped Edges Under Uniform Pressure Loading —
Nonlinear Element Convergence
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Figure 6.9 Flat Plate with Clamped Edges Under Uniform Pressure
— Percent Error in Nonlinear Solution

y
i
2.
1
¥
3
i
:
i
i
§
2

150




2000 Ib/in CASE 4

2000 Ib/in?

Figure 6.10 Single Element Load Cases
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Figurc 6.11 Nodal Forces for Single Element Load Cases
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Figure 6.12-a Stiffness Eigenmodes - QUAF 410
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Figure 6.12.b Stiffness Eigenmodes - QUAF 410




Figure 6.12-c Stiffness Eigenmodes - QUAF 410
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L = 20in.
b = 1.0in
d = Llia
E = 30 x 106 p/in?
p = 0.29 lb/in
v = 026
BEAM ELEMENT 210
i
!
1
i
Figure 6.13 3-D Beam Model For Modal Analysis
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30 x 105 1b/in?
0.3
0.283 ib/in3

Figure 6.14 Flat Plate Cantilever
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O ZIENKIEWICZ NON—CONFORMING TRIANGLE
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Figure 6.15 Flat Cantilever Plate Vibrations
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S |
SIMPLE SUPPORT r = 20in. E = 107 1b/in2
L = 40in. = 03
t = 0.04in. p = 0.260 x 10°3 Ib-sec2/in3

Figure 6.16 Simply Supported Cylinder
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Figure 6.17 Simply Supported Cylinder Flexural Vibration Modes
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Figure 6.23 Cantilever Beam-Pressure Pulse
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Figure 6.24 Cantilever Plate Under Transient Pressure Loading
— Tip Displacement History
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Figure 6.25

Cantilever Plate Under Transient Pressure Loading

— Tip Velocity History
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Figurc 6.26 Impulsively Loaded Ring

’ 5407-16

i $52, SANAPR- CS RIS . AGE < S T s e e




25

LEGEND
STAGSC-1

DYNAPLAS

2.0

1.8

1.0

CENTER DEFLECTION (in.)

| L | |

5407-17

0.0002 0.0004 0.0006 0.0008 0.0010

TIME (seconds)

Figure 6.27 Impulsively Loaded Ring
—Nonlinear Elastic Plastic Response
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Figure 6.29. Impulsively Loaded Ring - Deformed Shape at About 0.0008 Seconds
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Figure 6.30 Impulsively Loaded Ring - Rotation at 0.0010 Seconds
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Figure 6.32 Impulsively Loaded Ring - Nonlinear Elastic Response
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Figure 6.34 Comparison of Load-Displacement Results for the Venetian Blind

5407-63

177

"y




P/4 (Ib)

4.0

35

3.0

25

20

1.5

1.0

LEGEND:

STAGSC-t

o BROGAN AND ALMROTH, 1971

| |

w, (in.)

10
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Figure 6. 36 Hoop Variation of Radial Displacement at Midlength. Linear Results for
Poked Cvlinder. R/t=638, L/R = 892
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a) UNLOADED

Figure 6.4%. Progressive Deformation of Scaled Down Model Under Increasing Load
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d) AFTER LOCAL SNAP AT RIGHT CORNER

Figure 6.48. (Continued)
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7.0 CUNCLUSIONS AND RECUMMENDATIONS

In the Introduction, it was pointed out that the criteria for evaluating a
structural analysis computer program should reflect both the nature of the
program and the class of users most likely to require the program. Since
STAGSC-1 is a nonlinear shell analysis program its nature is quite specialized
and, by the same token, the majority of users will be relatively
sophisticated. This places considerable weight on the technical excellence of
the program, its flexibility in use and for post-processing and finally, on

its documentation.

‘ In order to obtain a systematic evaluation of the different aspects studied, a
i rating will be assigned to each aspect based on a scale of 0 to 4. Table 7.1
shows the interpretation of the rating method.

For the purposes of rating, five major aspects have been identified and given
a relative weight as foilows:

0o Program documentation 20%
o Analysis capability 20%
o Input and output 20%
o Program performance 25%
0 User support 15%

These will each be discussed separately in the next sub-section, but at this
point the overall conclusions can be stated; STAGSC-1 rates as about mid-way
between "acceptable and "good" (i.e., an arithmetic result of 2.39).

This may seem to be a somewhat conservative evaluation considering the many
unique capabilities of the program. In the opinion of the authors of this
report, however, the lack of documentation of the program itself and the
shortcomings in the area of post-processing justify this conclusion. [f these
two aspects were each upgraded to "excellent", then on the present system of
rating the overall evaluation would than place STAGSC-1 in the

' "good-to-excellent" range.

09238-84B:2
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7.1 PRUGRAM DOCUMENTATION

The three types of documentation evaluated were the users' manual, theoretical

manual and programmers' manual.
A. Users' Manual (Rating 3.5)

Highly rated because of logical orvanization and excellent user

guidance. Negative features are lack of any index or
cross-referencing and insufficiently clear indication of currently

inoperational features.

B. Theoretical Manual (Rating 1.5)

The low rating is due to incompleteness and substantial obsolescence.
C. Programmers' Manual (Rating 0)

The programmers' manual does not exist. Etqual weighting is given to

each of these so that the overall rating for documentation is only
1.67, i.e., between "maryinal” and "acceptable”.

7.2 ANALYSIS CAPABILITY

Eleven areas were selected for the purposes of rating. Each will be briefly
discussed and rated.

A. Static Linear (Rating 3.5)

STAGSC-1 is not specifically intended for linear analysis but such
problems are nevertheless handled very well by the program.
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B. Static Nonlinear (Rating 4.0)
The highest rating must be given to this capability by virtue of its
speed and the way in which solution strategy is handled
semi-automatically by the program while leaving the user significant
control.

C. Vibration Modes (Rating 3.5)
This feature is also highly rated because of the use of a very
effective eigenvalue solver, i.e., subspace iteration. This
capability is current "state-of-the-art."

D. Bifurcation Buckling (Rating 3.5)
The same comments apply as in the case of vibration analysis.

E. Plasticity (Rating 2.0)
The plasticity capability is judged as "acceptable" for the reason
that although a relatively modern hardening model (White-Besseling)
is implemented, current practice requires that a variety of hardening
models be available. Therefore, as a minimum, isotropic hardening
should also be implemented (kinematic hardening is available as a
degenerate form of White-Besseling).

F. Nonlinear Collapse (Rating 3.8)
This capability only falls short of the “excellent" category because
such analysis will often require the use of plasticity with the
consequent Yimitations as described above.
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Transient Response (Rating 3.8)

The time integration procedures available in STAGSC-1 provide
standard explicit (central difference) and implicit (trapezoidal)
methods plus three other implicit schemes (Park and Gear's 2nd and
3rd order). There is therefore considerable scope for the analyst to

select a procedure best suited to the problem in hand.
User Subroutines (Rating 4.0)

The wide variety of user-coded functions which can be specially
provided for any given function is well suited to the sophisticated
user. The range of capabilities available in this form is believed
to be exceeded only by the MARC Program [26].

Element Library (Rating 1.5)

The heart of any finite element program is the library of elements.
In the case of STAGSC-1, the library consists mostly of flat plate
elements with membrane and bending capability. There are, however,
no genuine shell elements with curvature and this must be considered

a significant disadvantage in a shell analysis program.
Elastic Material Properties (Rating 3.0)

Both isotropic and orthotropic material behavior are provided for
together with the ability to orient material axes in any given
direction. Multilayer composite materials may be represented by

specifying properties for each layer independently.

Temperature Effects (Rating 1.0)

Temperatures may be specified as a function of surface coordinates
but not in the thickness direction {except for discrete stiffners).
Moreover, material properties cannot be expressed directly as a
function of temperature.
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The overall rating for analysis capability is 2.89 (1.e., "good") with the
element library carrying a weighting of 3 and all other components weighted as

} or less.

7.3 INPUT AND QUTPUT

A. General Input (Rating 3.5)

—

The free format style of input and the ability to intersperse comment

1
1 ’ statements make for ease of input and subsequent ease of reading.
t
' The volume of input required is not excessive, even for larger
L problems.

B. Shell Unit Input (Rating 3.5)

The ability to generate both regular and irregular meshes ) standard
shell surface geometries is an excellent feature. Shell connections
are also easily specified if the shell units are joined at compatible
boundaries (e.g., a cylinder to a torus at a crass-sectional
boundary)}. More general intersections are not determined by tne

program {e.g., a cylinder/sphere intersection) and the intersecting
boundaries must be calculated ana input by the user. This also
denies the use of the shell unit library and the intersecting shells
must be defined by user subroutine or by a spline fit to specified

points.

C. Element Unit Input (Rating 1.5)

-

Input for the element unit places a much greater burden on the user
and the generation of a finite element mesh requires the use of user
subroutines; otherwise, input must be provided node by node and
element by element. However, the use of the element unit is normaliy
expected to be confined to local regions of the shell where the
geometry and/or the mesh may be very irregular.
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D. User Subroutines (Rating 4.0)

As has been indicated, most of the input data may be specified by
user subroutines and in many instances they provide the only means
(e.g., shell geometries not included in the library or shell surface
imperfections). The capability must be rated as excellent on account

of the range of functions available.
E. Geeral Qutput (Rating 2.0)

There is an acceptable deyree of selective control over solution
output, at least in terms of the frequency of the output. According
to the manual, complete sets of displacements or stresses, stress
resultants etc. can be printed at different intervals; this feature
is currently defective in that all the various quantities must be
output at every load or time step. A frequency specification for
selected displacements etc. would be a considerable improvement.

The occurrence of yielding is noted in the stress and strain output
but only the total strains are given. There should also be an option
to obtain the elastic and plastic components of the total strain.

F. Post-Processing (Rating 0.5)

The currently available post-processing using the STAPL program is
inadequate for many analysis tasks. The model and solution data are
saved for restart and this should be made accessible to the user tor
post-processing in any desired manner. A minimum effort in this
direction would be for the developer to provide a complete
description of the model geometry and solution data files.

The overall rating for input and output is 2.50 with equal weighting given to
each topic discussed.
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7.4 PERFURMANCE

The evaulation of performance is based on the specific advanced evaluation
studies described in Section 6. Since this examines only selected aspects of
the performance of STAGSC-1 the results cannot be ciaimed to be comprehensive
but are, at least, a reasonable indication of general performance.

A. Element Convergence (Rating 1.5)

The element convergence observed in the tests conducted is judged to
be less than acceptable in comparison with "state-of-the-art" curved
shell elements. This is regarded as a serious shortcoming not only
because of the loss in accuracy but also because the full potential
of STAGSC-1 as an efficient shell analysis program cannot be properly
exploited. The promised implementation of the Anmad isoparametric

~ ' shell element will, it is hoped, greatly improve this crucial aspect
of performance.

B. Eigenvalue Solutions (Rating 3.5)

The eiyenvalue solver performed well in determining modes and
frequencies in the often pathological situations of closely spaced or
repeated eigenvalues. It was also seen to be effective in computing
a mode closest to a specified frequency. Situations where the
performance was less effective were seen to be a consequence of an
unsatisfactory mesh or element aspect ratio and hence not
attributable to the eigensolver.

C. Transient Integration (Rating 3.5)

-

‘ Performance of the transient integration schemes for linear and
highly nonlinear problems was generally good. The trapezoidal scheme
appeared marginally the best based on the least amount of frequency
distortion and damping for the nonlinear transient. The explicit
metnod was unable to complete the nonlinear prublem even with an
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order of magnitude smaller time step than the estimated critical
value. From the aspect of economy, the explicit method did not
appear advantageous because the problem size was too small. However,
for highly nonlinear problems, the implicit schemes are of greater

utility since the stiffness matrix can be reformulated.
i D. Nonlinear Collapse {Rating 3.5)

The most significant conclusion that may be drawn from the
performance of the elastic nonlinear collapse analyses is that
STAGSC-1 has a clearly demonstrated capability to trace out a
load-displacement curve for a shell with somewhat subtle collapse

! behavior. In the case of the point loaded cylinder, the predicted
deformation pattern up to collapse appears to be in qualitative
agreement with that observed visually in a small scale model of the
cylinder.

STAGSC-1 performed successfully both for controlled load and
controlled displacement incrementation, largely because of the
adaptive incrementation based on the convergence of the solution.
This particular feature distinguishes STAGSC-1 from most other finite
element programs with nonlinear capability. Sufficient control was
found to be available to the user both for incrementation strategy
(ICUT and NEWT) and convergence tolerance (DELX). In addition to
effective control of solution accuracy, these strategic parameters

b provide the means to obtain the most economical solution.

-

£. Program Efficiency (Rating 3.0)

The overall efficiency of STAGSC-1 cannot be adequately assessed in
relation to other programs based on the present study. However,
given the available evidence it appears that:

(1) STAGSC-1 is a factor of 2 to 3 times more economical in solving
{ a small linear transient problem than the MARC program.
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(¢) there appears to be scope for improvement in data management for
the CDC 7600 system version. Based on the admittedly subjective
and imprecise impressions of other users, SIAGSL-1 15 a
relatively fast running program in its present form. It seems
safe to conclude, therefore, that improvements in the element
library and in data handling could bring improvements in overall
efficiency which would make it a first choice for shell analysis.

Giving equal weighting to each of the performance aspects of yields an averall
rating of 3.0.

7.5 USER SUPPORT (RATING 1.5)

The topic of developer support for users of STAGSC-1 nas not been discussed
elsewhere, but being a significant factor in the use of a large scale program
it deserves some consideration. STAGSC-1 is a program in the public domain
and the developers, Lockheed Palo Alto Research Laboratory, are not suppliers
of structural software in a general commercial sense. Potential users can
obtain the source file for a nominal fee and are then responsible for
installation on their own systems. Ffor an additional annual fee, updates and
consulting services are available from Lockheed.

Developer expertise is available for solving problems and applying the program
correctly. Program malfunctions can be reported but corrective action must be
taken by the user based on program "fixes" supplied by the developer.

Since funding for STAGSC-1 development is principally from NASA, the
individual user has little or no control over future development items. It is
clear that much better user support could be obtained if the fees were
adequate to support a group whose sole responsibility was consultation and
program maintenance. The present arrangement fails to be satisfactory if a
user requires a minor modification for his particular purpose. Generally
speaking, the complexity of STAGSC-1 makes user written modifications to the
program very difficult to achieve and there seem to be no proper channels
through which he can obtain them from the developers.
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As far as program updates are concerned, none have been received since the
evaluation version was delivered in November 1979.

During the present evaluation, the staff at Lockheed were consulted on
numerous occasions and excellent cooperation was obtained.

7.6 RECOMMENDATIONS
A. Documentation

There are four major recommendations;

(M

(4)

(M

09238-848:2
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An up-to-date theoretical manual with adequate coverage of
element formulations should be provided.

A programmer's manual is required which describes the program
flow in sufficient detail to enable the skilled user to identify
the source of any program difficulties and to make changes with
help from the developers.

The users' manual should be provided with a suitable index.

A problem demonstration manual should be written specifically :
for STAGSC-1. '

A good curved shell element (e.g., the Ahmad isoparametric) is
essential for the full potential of STAGSC-1 to be realized.
The simpler elements should be retained (QUAF410, 411) but the i
value of the higher order (QUARC) series would then be less and F
i

they could probably be discarded.
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(2)

(3)

(4)

(5)

(6)

(7)
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The option for additional plastic hardening models should be
provided. As a minimum, isotropic hardening should be
implemented and consideration should be given to simulating
cyclic hardening (or softening), e.g., the so-called ORNL 10th
Cycle Hardening Rule [40].

Inelastic behavior should be extended to include creep. A
simple creep law (e.g., the Norton formula) should be provided
with user input coefficients and the option for time hardening
or strain hardening. In addition, provision should be made for
a user specified creep law to be input. Consideration should
also be given to the eventual inclusion of cyclic creep strain
hardening behavior, e.g., the so-called ORNL auxiliary creep
hardening rules [40].

Temperature distributions should include variations through the
shell wall thickness. In addition, material properties should
be allowed to vary with temperature.

The input for the element unit could be improved. Simple
pattern generation for nodal coordinates and element
connectivity, in addition to the present node-by-node and user
subroutine methods, would make this feature much more usable.

The selectivity of stress and strain printout should be extended
to include the ability to print selected guantities at any
desired load or time step intervals. Also, the option should be
provided to obtain strain components decomposed into elastic,
plastic and thermal contributions.

A user post-processing file should be created which contains all
the necessary model geometry and solution data to permit
solution processing according to the needs of the analyst. The
file should be constructed so that the information retrieval is
straightforward and it should be fully documented.
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TABLE 7.1
EVALUATION RATINGS

Rating Interpretation
4 Excellent
3 Good
2 Acceptable |
1 Marginal '
0 Poor
‘ g
f
fi
|
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9.0 APPENDIX
9.1 STAGSC-1 SUBROUTINE LINKAGES

The overlay structure, as described in Section 3, Program Architecture, makes
frequent reference to the various subroutine calls made in each overlay, The
diagrams showing the subroutine linking within each overlay are contained in
this section. They are not flow diagrams since there is no sequence implied
in the way the diagrams are constructed. Some of the overlays are too large
to fit al) the subroutine calls within a single diagram. Far example, Overlay
(1,0) requires three diagrams (Figures 9.4, 9.5, and 9,6), Where there are
links between subroutines in different figures, the connection to the calling
subroutine is shown by a dashed line.

There are also two subroutines which make a considerable number of calls and
are themselves basic modules. These are MACUP in STAGS1, and CVR1 and VRDATA
in STAGS2. The details of the calls within these subroutines are given only
once (Figure 9.11 for MACUP and Figure 9.27 for VRDATA).

9.2 ELEMENT STIFFNESS EIGENSOLUTION

The concept of stiffness matrix eigenmodes is discussed by Gallagher [29]. In
order to obtain the distribution of strain energy with respect to the
eigenmodes for a given loading case, it is only necessary to decompose the
solution vector into modal components. The calculation of the strain energy
is then straightforward and can be obtained mode by mode since the modes are
orthogonal. The necessary equations will now be developed.

For an element stiffness matrix [k], the characteristic polynomial may be
obtained by expanding the determinant

(k] - 2 (111 =0 9.1

and the eigenvectors by solution of the equation
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(k] {dy}) = A (di) 9.2

where {di}’ A, are the i th eigenvector and eigenvalue.

Because of the orthogonality of the eigenvectors, we may write

t - -
(di} (k] (di} =y 9.3

provided that

t
(d;}

(di} =] Y.4
Thus, the eigenvalues are the corresponding generalized stiffness coefficients.

A matrix of the eigenvectors [rd] may be defined as

N B (P N S R N 3 9.5

where n is the order of [k].

Since the eigenvectors are linearly independent, any solution vector {a} may
be expressed as a linear combination of the eigenvectors as follows:

{8y = [ry] fa} 9.6
where (a)} is a vector of modal coefficients.

Thus,

{a} = [Pd]'] {8} 9.7

which, again because of orthogonality, may be written equivalently as
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{a} = [rd]t {a} 9.8

The strain energy associated with the displacement vector {(a} is

(a1t (K] (o) 9.9

| —

Because of Equation 9.6, this may also be written as
_ 1 t t
U =5 ta} [ry]" [k] [ry) (e} 9.10

Because of the orthogonality as expressed by Equation 9.3, this may be
rewritten as

V=g @'y (@ 9.1

where A is the diagonal matrix of the eigenvalues.

The program ELMOD was therefore written to perform the eigensolution for the
element stiffness matrix and also to determine the corresponding modal
coefficients for a solution vector (a}. The strain energy distribution is
then obtained simply from Equation 9.12. Table 9.1 gives the listing for
ELMOD.
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Table 9.1 ELMOD Listing

PROGRAM ELMOD (INPUT,OUTPUT, TAPES=INPUT, TAPE6=0UTPUT, TAPE10,TAPE1l)
DIMENSION A(1400),AKE(50,50),EIV(50,50),EIG(50),D(50),ALP(50),
1u(50),Fv1(50),Fv2(50)

INTEGER EIGEN,ATRANB

EIGEN =3
ATRANB = 23

READS IN ORDER OF ELEMENT MATRIX (M),FLAG ITAP TO INDICATE WHETHER
STIFFNESS DATA AND SOLUTION VECTOR ARE TO BE READ FROM TAPE OR
CARDS.

ITAP = C DATA FROM CARDS
ITAP = 1 DATA FROM TAPE
NSKIP IS THE NO. OF WORDS TO BE SKIPPED AT THE START OF TAPE1O

OO0 O0OO0O00

READ(5,1000) M,ITAP,NSKIP,MATZ
N = M*(Mt1)/2

Kl=N+1

K2=N+M

READS IN ELEMENT STIFFNESS MATRIX AS A LOWER TRIANGLE INTO ARRAY A
READS IN SOLUTION VECTOR AND TACKS IT ON TO THE END OF ARRAY A.

OO0 a0n

IF(ITAP.EQ.1) GO TO 50

READ(5,1010) (A(I), I=1,N)

READ(5,1010) (A(1),I=K1l,K2)

GO TO 60
50 READ(10) (SKIP,I=1,NSKIP), (A(I),I=1,K2)
60 CONTINUE

CREATES SEPARATE ARRAYS AKE AND D FOR THE ELEMENT STIFFNESS MATRIX
AND SOLUTION VECTOR.

anOn0n

DO 100 I=

DO 100 J=

K=J+1
AKE(I,J)
AKE(J,T)

100 CONTINUE
DO 110 I=1,M
J=MMH)/2 + 1
D(I) = AQJ)

110 CONTINUE

M
T

(1-1)/2
A(K)
AKE(I,J)

nn *kEpe

c FINDS THE EIGENVALUES AND EIGENVECTORS OF STIFFNESS MATRIX AKE.

] CALL RS (50,M,AKE,EIG,MATZ,EIV,FV1,FV2,IERR)
FINDS SCALAR PRODUCT OF EACH EIGENVECTOR WITH ITSELF TO FIND THE
NORMALIZATION FACTORS AND PLACES THEM IN ARRAY A.

anaon
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i

l

Table 9.1 ELMOD Listing (Continued)

DO 130 J=1,M

FACT = 0.0

DO 140 T=1,M

FACT = FACT + EIV(I,J)*EIV(I,J)
140 CONTINUE

A(J) = SQRT(FACT)
130 CONTINUE

SCALES EIGENVECTOR MATRIX EIV TO MAKE IT ORTHONORMAL.

(s NeNe]

DO 150 J=1,M

DO 150 I=1,M

EIV(I,J) = EIV(1,J)*A(J)
150 CONTINUE

THE VECTOR OF MODAL COEFFICIENTS IS NOW FORMED AND PLACED IN ALP.

aoon

CALL MATRIX(ATRANB,M,M,1,EIV,50,D,50,ALP,50)

DETERMINES THE VECTOR OF MODAL STRAIN ENERGIES.

a0

UE = 0.
DO 160 I=1,M
U(I) = 0.5*ALP(I)*ALP(I)*EIG(I)
UE = UE + U(I)
160 CONTINUE

PRINTS OUT THE RESULTS.

s NeNe]

DO 170 J=1,M
WRITE(6,1020) J
WRITE(6,1030) (EIV(I,J),I=1,M)
WRITE(6,1040) EIG(J)
WRITE(6,1050) U(J)
170 CONTINUE
WRITE(6,1060) UE
sTOP

1000 FORMAT(413)
1010 FORMAT(6E12.6)
1020 FORMAT(1H1,///,10X,11HEIGENVECTOR,1X,13,/)
1030 FORMAT (10X,E12.6)
1040 FORMAT(//,10X,31HTHE CORRESPONDING EIGENVALUE IS,1X,E12.6)
1050 FORMAT(//,10X,26HTHE MODAL STRAIN ENERGY IS,1X,E12.6)
1060 FORMAT(//,10X,26HTHE TOTAL STRAIN ENERGY IS,1X,E12.6)
END
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Figure 9.5 Element Table Generation (See Figure 9.4)




S At

{$'6 nd1] 39G) UOPBIUI J|qe] IPON 96 N1

(vo'0) 338
N
INACNI vi9
N J3ui0 A 0°1) 338
_ _ ALNNOS 0wod
1083 NVOHOr ﬁ
413034 04003
TRETTS _ % svanr N1diO 143
l— i
4
] 8981 SAON w033
.
: | S I
j [ ] I
- 1
1

NNS

{80 '3) AVIHIAD

5407-89

221

e
R T~

e A
VN

—m

]
H




uonEeIIUIN Ju() IUAWIA[F /6 ndig

D ¢ Bd

0101w
—

HSOW SOI0IN NN

N3dIQ
ﬁ L1
[ [~

0901 VIHLY

d0113 ovann | | z23u10 LW $01113
I T
1 17 L~ = 1
s0aoN | | doroim 300N Wv3g 11 avno ONIYdS
— I L B
NN3 1
01113
dILIND — 103
1

T -
.
2is409 nanas

N3IA0

(0°2) AvIHIAD

5407-90

222




Atewwing ynduj [3pop 8¢ 21nSi

0zds3 0tds3 14 21S402

1av0 MYL dvli Wyl avi 1SNOJY N3400! 301V

223

QYY)

SiNItd

SIAD

(0°90) AVIHIAD

5407-70




e é :
: 10853501d-314 ssaugyus JuawAg 66 dindig
.r
* ] .
! (P dAdn INYLEM d
: ,
| 01113 L
o
|
"
4

(0°L) AVTIHIAO




AepaarQ JudwayJ weag Q] 6 131y

—
B3
L
AINS LW We3s
~ _ P N3dI0
i < MV vl
{V 10 '20) ) _
i3 d1MINS z93H10 —
| LT 203410 ] |
WHN | ] a1 0
dNIVWN — 1 | LT | gyv43ud N
ISSVN | _
Av3g r _ ]
L
L
]
Was9o
ZZINO
>
{10 AVIHIAO Ny
=)
<
w




)
N\ 1
1
13108 Sdvy¥i 23104
Myl
) ]
< v
1N039 oN0d Fii L] YHINOD INvL | [I'1 ]} 4]
L
f _ L
39vd ) 33N
i )
J ) —
— 11
Hd0Wd Lol /] ING) 94 1949 HYIWNS [ Fh] iNS) Ewed NASH
—
dNIvw

(¥1°L) AVIEIA0

5407-73

226

RYY

R AN

o s




4
R

UONEIIUIND JUIWNT el [eINejupend) T | ¢ unSiy

1H3IANI 41303y ”
) ravno IANO4 _
7401
) 33§
vi'e) | ]
338 7
HSW 404
dNIVIN AXdvi N
4vno 2ISH02

_IIL

iy IA0

(°1) AVI43IA0




B Pt T

LihOmd o

R et .

—

5407-75

(07,02 A)
MSH
J L ]
I TLCGB
TRAVS DIRECZ
ALINE MIDIO
DIPEN LINE
VECADB VECAXB VECMAG

Figure 9.13 Nodal Coordinates and Integration Points

228




UOIIBIJUAN JUIWI[F J)eld sendueu] | 6 un31 4

NN

N3dI0

o=

IYWIIA

axviIA

20VJ3A

|

MawiyL

daiIL

9141

230

L LTS

Jidl

L

INIY

il

T

(vi't0)
335

1

dNIVI

ISSYW

Aldl

L

sopatureeEb e P T T

INIEL

1€£3A0

(€0°£0) AVIHIAD

o e

5407-76

229




-

——— s —— .+

P T P S

AE[I3A( UOLIEALISII] Iseq eye S| 6 2indig

"
w4 i
y |
sa014n | | EWOW 0101w wsva | | uisnoa
L
AN 01113 173N1
)]
1
- WWW W40 VSN 3yd . SIA 24vi
£Y3IANI T YaNAN
[
1 1419 LVdW3
0OAOW
aT4INI W3OLWA L J QOWAVS
]
LT - _ |
G3IAVS
I
ASAD
(0°01) AVIHIAOD
——— ———

230

5407-98




H3IH1H

ABHIAQ UORIISISIUY JIun) [|3YS 9|6 unSiy

ILREL]

HIGWNN

ISAD

(0°21) AVIH3IAO

231

5407-99

e

XL

P




-~ L SRARSEE L e e ey TS

A |
_l
l OVERLAY (13,0)
' ovsL
. LOADS

[ ] ]

: ‘ L0ADOP MASSOP I

, LOAD i

!

| = |
BNDY FORCES
| | | |L
MIDI0 1| )
FORC INVER 3 TUNCI
i
'
CLINE GEOM1 MMM

i
GETZZ 4
CAT
i
oMo 1
‘;
Figure 9.17 Shell Unit Loads Overlay “
[ 5407.79




OVERLAY (25, 0)

OVEL

i l LOADE

I ]

FORCEE LOADQP MASSOP

PO NN Ty N A e 7

1 INVER3

Figure 9.18 Element Unit Loads Overlay

It

5407-80

233




-
>

Seade RS

weidosd uonndaxy urW el 6 Mg

8AO
LAD
9K0
SAO
ZAO
1AD

(80°0)

(vo'o)

234

hw

TYINO

]

vivay

Z43Isni

IS9V1S

(0°0) AVIHIAO




540743

OVERLAY (0,0A)

LUSER2

CROSS

1

FORCET
TEMP

UPRESS

Figure 9.20 User Subroutine Loader

235

WALL




SIUWILEIS ele( TSOVIS (76 aandiy

|

SWim
nvd =z F)
] Q
3 x g
¥y JI"
1 q_
) dsv9
LR E
2 > HIAON Bl
aavas ﬁ..w
N403S 1409V o

F HH3IN
I r g
ﬁ f —

13901 W

ﬂ
(-

Yivay

(80°0) AvI43IAD

540744

e,




ISOV LS wolj 13jsuea] eieq ¢c'6 1ndig

Ny 00H4Is Xwe
LE 7]
vo'y)
[T
(WK _\ I
J L
!
Q04dA (WL
_— LSy = rlJ 2301
[
r 2 =
IAON 1NYd ! | ) {GAOW ZiSHG3 Muw
|| Luvise “ “
— [} f
P S
[ L L
-— l S -L_
1 _~I ' __l 1“
1HY1SY ! HY413S ) 34Vl “ | 93AE NILYO
| ! ! ! !
- ~ | SR | | IO |

0iAO

(0°1) AVTHIAD




[onuo) 1mysay sisfeuy £7'¢ undtg

(MVEES
W4 _
-
INNL CHIANI
J11 T
L — | 10N
. 24Vl [ _ 1L
(8°1) 338 T
IAOWA WAOLW I01MA 111
ALS 11— 23AH
T ]
LHVISH
(V0'1) AVIHIAC

R S e

5407-46

238




O T RPN

—— e e e

R

OWav4

e _

uonsodwodaq XUIey SSIUJuS 7’6 Mndrg

Q04das

VAISY

rvd

JAOWA ews | |wasv | | owasv
L |
r
W4 Wasv
4019V W4
| ]
J 1

L]

dW0930
[

0ZAQ

(0°2) AVIH3IAO

A

5407-47

239




137105 anjeaudBiy 7' 2andiy

o g e e - - ——————e - ——  —————— e e s — ——— - = e

00Y4 ENZ Wit LY i
413034 a0udIs ad
g \
L ir |~! 9 L“
23A 1 ! h
9YAND) 00UdA QavA JAOWA L
—
433MS
p \ i N
(vg ') 338
3 o
(LT <
N3913 XW3$ 33ANI N
NOH1¥0 NNA INWSA
oNnos 3A08 _ 4— 1 I
N Xnay
y
_ J - L
L1 T 1 Y Y YW
11WIS 10N
—Jd
r
il
0£A0
{0°E) AVIHIAD

540748




i 3

e e i o

OVERLAY (3,0A)

5407-49

(]

FM2

EIGEN
=
l vPROD |
|
L__J
| i
| |
I
|
TaL2 TRED2 ESORTY
REDUCE
A |
EXPAND
I N
o’
SCALE VADD SLICEZ FM3

REDCLP

Figure 9.26 Eigensolution for Subspace

241

S e



£ g
UOLIB[NULIO § XUIBI SSUYPNS LT°6 2AnB1]
4SH1H ddvz
00044 J00%d
i
T .| _l_ L r|_
1 1 r—=-—4 i
acays azays | 1 400HA |
191 L—e—J]| 013us
_ _ ]
(80 'y (va‘e)
33§ 33§
S3ys
— ANS INYaN
ZHA 1YOHA
N
IAOWA _ 1 | 3
N4 TYAD
1NNA Wi
L )|
| ]
JENE]
215403 ZHYA
1
1|
o AD
[=]
\r,
=
(0°9) AVIHIAO 3




ele(] SSAUJNS UMY  8T'6 2indi]

(0'%) 338
IMOIYL ANOIYL 11283 ddv2 Javno AYG4 CTRIT: waas

‘
H

o™

141GHA J0QYA WEQUA g

ViVQYA

“

(V0'y) AVIHIAD m

w

e T



uogeindwo) ssauyng Juawafy 676 Mnd1g
119312 2dvz ZAn !
;
i
..\,MI
i ¥
| M
m
) 012HA azzuA aoudas VN34
W OEZUA 133N s
..H ~ 3
b
w
| s
24A w
” o m
M (80°%) AVIHIAO s *
S :
!
B P e e e — - - - - — g BB B = w
TR T T T e




312U UIRLIS JO UOHBLIBA IS] 10 ABHIAQ 0F°6 a3 g

.
L_(ve's) 335 | o J
DOM4IS 419034
. | _ sl
—— 5
awe ™02 vo's)
GOBdA 238
A wi
2A0RA GOVA
nee T | 18A2
]
L _ |
eI
|
1HVA
15180 215402
" _ 1
- LL{
.:_>u"
| \ 5A0
Le—ca

{0°S) AVIHIAD

5407-53

245



A313uz WIRNS JO uonEUERA IS[ [£'6 MnBI]

00u43s AN vz
1 NJ”‘ |~\ J_\! -
e ﬂ
ekttt r. 1\_ — ;
SO S, i
: ! : ! ]
) Qouer | G 1 1 awd || azia oE18A V
[}
1} ] ]
ateur beeend mme=d beeood 00084 30044 _
Lile —= W
™m
i
A Suld 1~ i3S
[~ B2
o~
—_—_1_ T acaus
1
0zaus |
1009¢ j
L
ve » 335 _I 05 338 _
VivouA
i 334 151A0 INHOH $3u5
1S3 19740 ot
| L ) |
~ |
18A2
(V8 'S} AVIBIAD

5407-54

246




3 ST Ve

SR P

IMVL

18v1

ABUIAQ AONSBld 7€ ¢ MNF1Y

13104

1|

8vi3dd

L

AL

aisvid

111

1SV

J18v1d

ISA0

(1°5) AVIHIAD

5407-55

247




- e T T W T

B T

OVERALAY (8,0)

ovss
TTT
DYNR
CORSI1Z ovLs1
: [
| EXpLC ]
| T _
| CVRY FORCEI ooes
SEE (8, A} ‘ SEE (s, 08) ’
comMs FORCET VADD V'ov[/‘
d
M SCRPOD REOCL? M2

Al

Figure 9.33 Dynaimic Response Overlay

5407-56

248




13:j0§ uonenby [enualagyIq A1BUIpIQ [BI3UIN) HE6 B

Wi
412034 004438
[ I
A A g ¢
[ — .
_ — a
dIIMS N4
1 \I._ —} A S )\J
A\ 4
JAI0S —
A 1R INKA JAONWA o2}
<
— N
(v0's) 338
Q0Hd¥ Q0ddA aava TANSA
I1HA)
C |
1 il \
A104d d3isn ﬁ aW0J 133404
—I HILIN ~ 4
1X3N dIISW 132404
)
| L
$300

(80°6) AVIHIAD

5407-57




IMVL

(OIBUA() ABIIAD ANDUSEld Gf 6 N1

18yl 13104 WVl
| ] |
11 [
av434d aIsvid
|
111
1Sv1d
_
315V
T
19A0

(1°9) AVIHIAD

250

5407-58




fonuae) wding puy 834§ Hotinjog 104 ABHIAQ 9€ ¢ NS4

vivas

]
H —1[—
w0 " wa o - sioom rHﬁL
1 @l q \Mn_ — uson NNy
LWJ ey |
™ svuls 03 T
L] L | 5100
s —

tvivg

—

(T2

(8°L) AVIHIAD

5407-59

251




S1A

ndinQ puy uoneindwo) ssang 104 AeparQ LE 6 2inB1 g

INYOY

IMVL 181 000yd 20044 ddvz 1514
1 A 1 | N | 1
8v3434d 191 i3S 0z34s ae3ys
]
(V0 p) 335
0'y) 33 saus
VLVOUA ﬁJ\ ] 18770
e -]
- ~
orL13
—, i
‘ I
01183 sisino
T

VNOIS

08A0

(0°01) AVIH3IAO

540760

252

R anta s VN T e

i
§
M




i
|
]
OVERLAY (10, 1)
i
ove
! SIG1D CORSIZ
$IG1D1 $IG102 SIG103
i
L] ?
>
ML
ROTEY TAMI TRVS1D
]
ANSES1 )
SHED1

Figure 9.38 Overlay For Stress And Strain Computation - 1D Elements

5407-61




ﬁyi

Sjuawd[g Y - uonelndwo) uleng puy ssang 10 ABHIAQ 6£°6 NS

ZG3HS 0zSAHL WS9IS INVL
}
L {3
!
ZSISNY £029Is 1az91s zazoIs EHIANI ._M
<
(Ve)
N
ZISH09 az9Is

I8A0

(Z°01) AVIHIAO




‘ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered} )
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
' 1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
WARD-10881 AD- /027 94
4. TITLE (and Subtitle) g 3. TYPE OF REPORT & PERIOD COVERED
. Final
Evaluation of the STAGSC-1 Shell Analysis
I Computer Program 9/28/79 to 1/12/81
6. PERFORMING ORG. REPORT NUMBER
l 7. AUTHOR(s) % CONTRACT OR GRANT NUMBER(s)
Kevin Thomas Office of Naval Research
L. H. Sobel N0O0014-79-C0825
: I 9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT PROJECT, TASK
. AREA & WORK UNIT NUMBERS
' Westinghouse Advanced Reactors Division NRO64~429/6-22~79
{ Box 158 (474)
‘ Madison, PA 15601
‘ 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research August 1981
800 N. Quincy St. 13. NUMBER OF PAGES
Arlington, VA 22217 265
4. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office) 15. SECURITY CL ASS. (of thie report)
Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING :
SCHEDULE ;/

]
16. DISTRIBUTION STATEMENT (of this Report) H

Distribution of this document is unlimited. K

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceseary and identify by block number)

STAGSC-1, Finite Element, Shell analysis, Computer Program, .
Nonlinear anmalysis. '

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

— } ™. An evaluation of the STAGSC-1 finite element nonlinear shell analysis program
was made. Detailed descriptions and critiques of the program capabilities,
documentation, architecture and performance are provided. An in-depth
technical evaluation of the element library performance is presented. Also
studied were the eigensolver performance and performance of the transient
integration operators for nonlinear problems. A detalled case study i
presented for a nonlinear collapse problem. .. - -

S m e i — ——

DD , SR, 1473  £0iTion OF 1 NOV 68 13 OBSOLETE

i S/N 0102-014~ 6601 |

1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entersd)

——







